Программное приложение для измерения параметров движения летящих объектов на основе эффекта Доплера

В. Л. Козлов, О. В. Кисель

Белорусский государственный университет, Минск, Беларусь, e-mail: KozlovVL@bsu.by

Приводится методика одновременного измерения дальности и скорости летящего объекта на основе Доплеровского сдвига частоты излучения. Разработано программное приложение, осуществляющее расчет параметров (скорость и дальность) движущегося объекта на основе эффекта Доплера.

Ключевые слова: доплеровский сдвиг частоты, измерение скорости, измерение дальности, гетеродинный приемник, программное приложение.

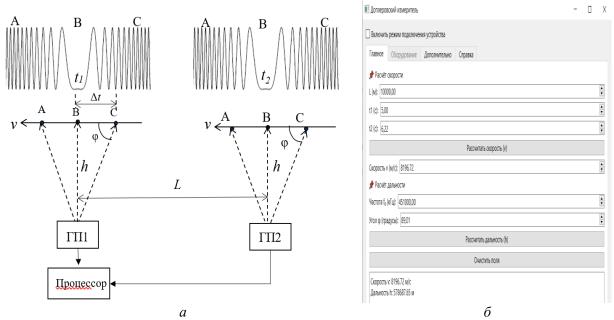
Software application for measuring the motion parameters of flying objects based on the Doppler effect

V. L. Kozlov, O. V. Kisel

Belarusian State University, Minsk, Belarus, e-mail: KozlovVL@bsu.by

A method for simultaneously measuring the range and speed of a flying object based on the Doppler frequency shift of radiation is presented. A software application has been developed that calculates the parameters (speed and range) of a moving object based on the Doppler effect.

Keywords: Doppler frequency shift, velocity measurement, range measurement, heterodyne receiver, software application.


Задача определения высоты неизвестного космического объекта для оценки величины наклонной дальности в задачах вычисления орбит по угловым оптическим измерениям [1] в настоящее время является достаточно актуальной. Высокоорбитальные космические объекты наблюдаются главным образом оптическими средствами, которые работают только в ночное время при надлежащих погодных условиях. Эти средства [2] измеряют только два угла и не позволяют измерять дальность до объекта.

Приводится методика измерений [3] и реализующее её программное приложение, предназначенное для решения актуальной задачи дистанционного зондирования — одновременного определения скорости и дальности до движущихся космических объектов. Функциональная схема, поясняющая предложенную методику, представлена на рис. 1, a. Методика измерений заключается в следующем. Движущийся космический объект излучает электромагнитный сигнал частоты f_0 .

Так как объект движется со скоростью v, то принимаемое гетеродинными приёмниками излучение сдвигается по частоте по сравнению с излучаемым сигналом f_0 на доплеровскую частоту f_d , мгновенное значение которой имеет величину

$$f_d = 2\frac{v f_0}{c} \cos(\varphi)$$

где v — скорость движения объекта, ϕ — угол между направлением скорости движения и направлением на гетеродинный приёмник, c — скорость света. Гетеродинные приёмники ГП1, ГП2 разнесены в пространстве на расстояние L. В результате гетеродинирования на приемниках выделяется сигнал разностной частоты f_d .

 $Puc.\ 1.\ Функциональная схема методики определения скорости и дальности (a); интерфейс программного приложения (б)$

В ходе перемещения объекта над приёмниками угол ϕ между направлением скорости движения и направлением на гетеродинный приёмник будет изменяться, поэтому будет изменяться и доплеровский сдвиг частоты f_d . Время, когда доплеровская частота достигает нулевого значения в точке B, на приёмнике ГП2 равняется t_2 , а на приёмнике ГП1 равняется t_1 . Гетеродинные приёмники разнесены в пространстве на расстояние L, следовательно, скорость движения объекта будет равна

$$v = \frac{L}{(t_1 - t_2)} \tag{1}$$

Для вычисления дальности до объекта необходимо определить число импульсов доплеровского сигнала при изменении угла между направлением скорости движения и направлением на гетеродинный приёмник в пределах от φ до $\pi/2$. Среднее значение числа импульсов доплеровского сигнала при изменении угла от φ до $\pi/2$, которое будет происходить за время от $t_1 - \Delta t$ до t_1 можно определить следующим образом

$$f_d = f_0 \frac{v}{c} \int_{0}^{\pi/2} \cos \varphi d\varphi = f_0 \frac{v}{c} (1 - \sin \varphi), \text{ откуда получаем } \varphi : \sin \varphi = (1 - \frac{f_d c}{v f_0}).$$
 (2)

В процессоре измеряется число импульсов доплеровского сигнала f_d и определяется дальность до объекта h по формуле

$$h = v\Delta t \cdot tg \left(arc \sin(1 - \frac{f_d c}{v f_0}) \right). \tag{3}$$

С целью практической реализации теоретических положений была разработана программная реализация метода измерения параметров движущегося объекта на основе эффекта Доплера. Интерфейс программы включает несколько вкладок. На рис. 1, б представлен интерфейс программы во вкладке «Главное». В данной вкладке вводятся все исходные данные, необходимые для расчёта параметров движения объекта на основе эффекта Доплера. Программное приложение позволяет производить расчет скорости и дальности объекта по входным данным, полученным от двух гетеродинных приёмников, а также визуализировать результаты вычислений. Реализация алгоритма основана на анализе доплеровского сдвига частоты и времени пролёта объекта над приёмниками. На вкладке "Прогр" размещена инструкция по работе с программой, в которой пошагово описан порядок ввода данных и выполнения расчётов, что облегчает использование программы.

Вкладка "Оборудование" предназначена для подключения к программе внешних устройств, с помощью которых автоматически будут получены все исходные данные, необходимые для расчёта параметров движения объекта.

Во вкладке "Дополнительно" реализован график с поддержкой анимации. Построение графика становится доступным после выполнения пяти измерений. Он отображает изменение дальности до объекта, полученное на основе различных входных данных. Есть возможность экспорта графика в PDF и экспорта полученных данных в ТХТ формате. Разработанное приложение позволяет как вручную вводить исходные данные для теоретических расчётов, так и использовать сигналы, получаемые от подключаемого измерительного оборудования.

В процессе тестирования были выполнены теоретические расчёты параметров движения объекта и проведён их анализ. Полученные результаты показали, что программа корректно рассчитывает скорость и дальность движения на основе эффекта Доплера.

Библиографические ссылки

- 1. *Самотохин А. С., Хуторовский З. Н.* Алгоритмы обнаружения высокоорбитальных космических объектов по оптическим измерениям //ИПМ им. М. В. Келдыша. 2023. № 41. 28 с.
- 2. Метод начального определения орбиты космического объекта по ограниченным данным угловых оптических измерений / В. С. Баранова [и др.] // Приборы и методы измерений. 2025. № 2. С. 121–132.
- 3. Доплеровский измеритель дальности и скорости движущегося объекта: пат. 13652 РБ / В. Л. Козлов, В. С. Баранова, А. А. Спиридонов, Д. В. Ушаков; дата публ.: 05.02.2025.