Программное приложение на основе корреляционной обработки цифровых изображений для криминалистических исследований

В. Л. Козлов, М. А. Бахарь

Белорусский государственный университет, Минск, Беларусь, e-mail: KozlovVL@bsu.by

В работе представлены исследования, связанные с разработкой программного приложения на основе корреляционной обработки цифровых изображений для решения задач криминалистических исследований. Реализованы методы нормализованной кросс-корреляции (NCC) и локального коэффициента корреляции Пирсона с применением метода скользящего окна. Экспериментальная проверка показала высокую точность распознавания совпадений.

Ключевые слова: корреляционный анализ, цифровое изображение, трехмерная карта корреляции изображений, коэффициент корреляции Пирсона,

Software application based on correlation processing of digital images for forensic investigations

V. L. Kozlov, M. A. Bakhar

Belarusian State University, Minsk, Belarus, e-mail: KozlovVL@bsu.by

This paper presents research related to the development of a software application based on correlation processing of digital images for solving forensic investigation problems. The methods of normalized cross-correlation (NCC) and local Pearson correlation coefficient using a sliding window method are implemented. Experimental testing demonstrated high accuracy of match recognition.

Keywords: correlation analysis, digital image, 3D correlation map, Pearson correlation coefficient.

Корреляционное распознавание изображений является одним из наиболее перспективных и широко применяемых инструментов для идентификации, поиска и локализации объектов относительно сложных форм при проведении экспертных исследований [1]. Традиционные методы визуальной экспертизы требуют существенных временных и человеческих ресурсов и носят во многом субъективный характер [2]. Использование специализированных программных приложений с применением функций корреляционной обработки цифровых изображений объектов экспертного исследования позволит при проведении криминалистических экспертиз расширить число применяемых методов и средств измерений, оптимизировать процесс измерений, и тем самым повысить качество, достоверность и репрезентативность проводимых исследований

Был проведен анализ возможностей и областей применения функций, реализующих корреляционную обработку цифровых оптических изображений, в зависимости от отношения сигнал/шум на исследуемых изображениях в различных спектральных диапазонах для использования при решении поставленных задач. Наилучшими параметрами для использования при проведении криминалистических исследований обладают нормированная кросскорреляционная функция

(NCC) и нормированная сумма квадратов разностей (NSSD), которые обеспечивают правильное обнаружения объекта вплоть до отношения сигнал/шум ~ 1/10. Однако при этом для функции NSSD с уменьшением отношения сигнал/шум значение корреляционной функции уменьшается значительно быстрее, что делает функцию NCC более предпочтительной для использования [3].

Для реализации системы корреляционной обработки изображений было разработано программное приложение, интерфейс которого представлен на рис. 1.

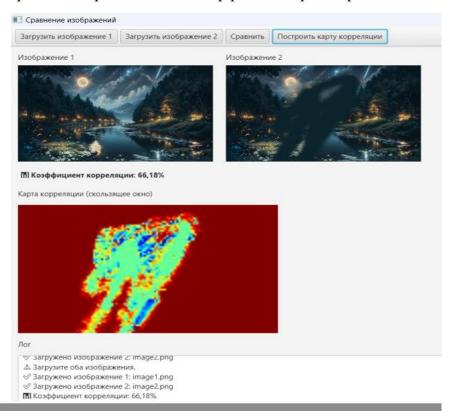


Рис. 1 Интерфейс программного приложения

Программный прототип реализован на языке программирования Java 17 с использованием JavaFX для GUI и библиотеки OpenCV 4.11 для обработки изображений. Приложение обеспечивает: загрузку двух изображений, выполнение глобального сравнения методом NCC (OpenCV: Imgproc.matchTemplate с TM_CCOEFF_NORMED), локального анализа методом скользящего окна с вычислением коэффициента Пирсона, построение 2D-карты корреляции и экспорт матрицы корреляции для внешней визуализации (3D).

Структура программы:

- 1. Main.java загрузка FXML и запуск приложения (JavaFX).
- 2. layout.fxml описание GUI: ImageView для исходных изображений, кнопки управления, метка результата и ImageView для карты корреляции.
- 3. Controller.java обработка событий, чтение изображений через Imgcodecs.imread, реализация matchTemplate, расчет локального коэффициента Pearson и преобразование Mat→Image для отображения.

Технические детали реализации. Предобработка: преобразование в градации серого, нормализация яркости, при необходимости применение фильтрации (GaussianBlur, median) для подавления шумов.

Глобальное сравнение: Imgproc. matchTemplate (matB, matA, result, Imgproc. TM_ CCOEFF_NORMED); затем Core.min Max Loc (result) для поиска максимума и его координат. Локальный анализ: метод скользящего окна. Размер блока (blockSize) выбран равным 16×16 пикселей, шаг (step) — 8 пикселей (частичное перекрытие). Для каждого блока вычисляется коэффициент корреляции Пирсона. Результирующая матрица локальных значений нормализуется в диапазон [0,255] и отображается с применением цветовой карты JET (Imgproc. apply Color Map).

Проведены эксперименты с тестовой выборкой сканов документов, включающей: оригиналы, копии с добавлением шума, локальными закрашиваниями, сдвигами и изменениями контраста. Для каждого случая вычислялся глобальный NCC и формировалась локальная карта корреляции.

Также отмечено, что единичное изменение пикселя в локальном блоке снижает величину NCC приблизительно на 0.0005, что демонстрирует высокую чувствительность метода к тонким вмешательствам.

Результаты подтверждают, что сочетание глобальной NCC и локального анализа по методу Пирсона обеспечивает эффективную и наглядную оценку совпадения изображений. Глобальный NCC удобен для быстрой проверки на полное совпадение, локальный анализ — для обнаружения и локализации мелких искажений. Фазовая корреляция целесообразна для предварительной компенсации глобальных сдвигов и выравнивания изображений перед локальным сравнением. Параметры blockSize = 16 и шаг = 8 показали оптимальный компромисс между детализацией карты и временем вычислений на тестовых данных.

Таким образом, разработано программное приложение на основе корреляционной обработки цифровых изображений объектов экспертного исследования, позволяющее одновременно решать различные задачи криминалистической экспертизы как: изучение цвето-тоновых параметров цифровых моделей изображений оттисков печатей и штампов, анализ степени старения и обнаружение дефектов любого фрагмента печати; анализ качества печати и идентификация принтеров, обнаружение подделок и фальсификации изображений, дефектоскопия объекта и др. Перспективы развития: интеграция анализа цветовых каналов, комбинирование корреляционных подходов с вейвлет-анализом и машинным обучением, расширение функционала по работе с большими архивами документов.

Библиографические ссылки

- 1. Технико-криминалистическая экспертиза документов: учебное пособие / Н. В. Ефременко [и др.]; под общ. ред. Н. В. Ефременко. Минск: Акад. МВД, 2012. 343 с.
- 2. *Яблоков Н. П., Головин А. Ю.* Криминалистика: природа, система, методологические основы Москва: HOPMA, 2009. 288 с.
- 3. *Козлов В. Л., Згировская Н. В.* Анализ искажений печати и идентификация принтеров на основе корреляционного анализа цифрового изображения // Матер. XI Международной НТК «Квантовая электроника». Минск. 2017. С. 272.