Модуляция бесселевых световых пучков в кристаллах парателлурита акустооптическим методом

Г. В. Кулак¹⁾, А. М. Варанецкий²⁾, П. И. Ропот²⁾, Л. А. Тозик¹⁾

¹⁾Мозырский государственный педагогический университет им. И. П. Шамякина, Мозырь, Беларусь, e-mail: <u>g.kulak57@mail.ru</u>

²⁾Институт физики им. Б. И. Степанова НАН Беларуси, Минск, Беларусь, e-mail: <u>p.ropot@dragon.bas-net.by</u>

Исследована акустооптическая модуляция бесселевых световых пучков с длиной волны 532 нм на продольных ультразвуковых волнах в кристаллах парателлурита. С использованием двумерной теории связанных волн показано, что с увеличением длины акустооптического взаимодействия и мощности ультразвука эффективность дифракции увеличивается. Для центральной частоты ультразвука 100~MГц достигнута ширина полосы частотной перестройки модулятора $\sim 35-50~\text{M}$ Гц по уровню 3дБ при максимальной эффективности дифракции $\sim 56~\text{\%}$.

Ключевые слова: акустооптическое взаимодействие, ультразвуковая волна, полоса пропускания, акустооптическая модуляция, эффективность дифракции.

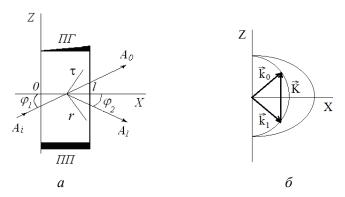
Modulation of Bessel Light Beams in Paratellurite Crystals by an Acousto-Optic Method

G. V. Kulak¹⁾, A. M. Varanetsky²⁾, P. I. Ropot²⁾, L. A. Tozik¹⁾

1) Mozyr State Pedagogical University named after I. P. Shamyakin, Mozyr, Belarus, e-mail: g.kulak57@mail.ru
2) B. I. Stepanov Institute of Physics of the NAS of Belarus, Minsk, Belarus, e-mail: p.ropot@dragon.bas-net.by

Acousto-optic modulation of 532 nm Bessel light beams by longitudinal ultrasound waves in paratellurite crystals was studied. Using two-dimensional coupled-wave theory, it was shown that diffraction efficiency increases with increasing acousto-optic interaction length and ultrasound power. For an ultrasound center frequency of 100 MHz, a modulator frequency tuning bandwidth of ~35–50 MHz at a 3 dB level was achieved, with a maximum diffraction efficiency of ~56%.

Keywords: acousto-optic interaction, ultrasonic wave, bandwidth, acousto-optic modulation, diffraction efficiency.


Введение

Акустооптические модуляторы света используются в качестве устройств ввода информации в оптические обрабатывающие системы [1]. При этом могут быть реализованы системы для одноканальной и многоканальной обработки информационных сигналов, например, от радиолокационных антенных решеток. В настоящее время значительный интерес для оптических информационных технологий представляют квазибездифракционные световые поля, которые соответствуют световым пучкам с сохраняющимся в процессе распространения поперечным распределением амплитуды поля. Наиболее известным классом квазибездифракционных полей являются бесселевы световые пучки (БСП) [2].

В настоящей работе теоретически и экспериментально исследованы особенности акустооптической модуляции бесселевых световых пучков на продольной ультразвуковой (УЗ) волне, распространяющейся вдоль оптической оси кристалла парателлурита (ТеО₂). Рассмотрена акустооптическая (АО) модуляция при изотропной АО дифракции пучков обыкновенной поляризации (*o-o* преобразование). При теоретическом исследовании применена двумерная теория связанных волн (см. [3]) с учетом отстройки брэгговского синхронизма.

1. Теоретические результаты и их обсуждение

На рис. 1 представлена схема изотропной брэгговской дифракции линейно поляризованных световых пучков

 $Puc.\ 1.$ Схема АО взаимодействия БСП и продольной УЗ волны (a); геометрия расположения преломленной и дифрагированной плосковолновых компонент БСП в плоскости дифракции на продольной УЗ волне в кристалле ${\rm TeO_2}\ (\delta)$: ${\rm \Pi\Pi-n}$ пьезопреобразователь; ${\rm \Pi\Gamma-n}$ поглотитель ультразвука; ϕ_1 и ϕ_2 — угол падения и дифракции соответственно; $\vec K$ — волновой вектор ультразвука, $\vec k_0$, $\vec k_1$ - волновые векторы преломленной и

дифрагированной волн

Рассмотрим геометрию АО взаимодействия (рис. 1), для которой УЗ волна распространяется в кристалле TeO_2 вдоль оси Z и занимает пространство между плоскостями x=0 и x=l. Ось падающего БСП расположена в плоскости XZ под углом ϕ_1 к фронту УЗ волны. Сечение поверхности волновых векторов плоскостью дифракции XZ и расположение плосковолновых компонент падающего (\vec{k}_0) и дифрагированного (\vec{k}_1) и плосковолновых компонент показано на рис. 1, δ . При этом, как показано на рис. 1, δ , реализуется дифракционный процесс: $\vec{k}_0 + \vec{K} = \vec{k}_1 + \Delta \vec{k}$ ($\Delta \vec{k}$ - отстройка фазового синхронизма). Для рассматриваемой геометрии АО взаимодействия следует положить: $\phi_1 = \phi_2 = \phi = \arcsin(\lambda_0 \upsilon/2n_o \upsilon)$, где λ_0 — длина световой волны в вакууме, $(n_0$ — обыкновенный показатели преломления кристалла), υ - фазовая скорость продольной УЗ волны [1]).

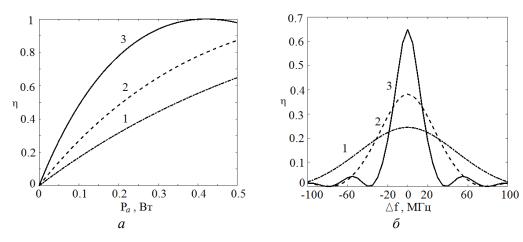
В рамках двумерной теории связанных волн система связанных дифференциальных уравнений для комплексных амплитуд дифрагированных волн $A_0(r)$, $A_1(\tau)$ имеет вид:

$$\frac{\partial A_0}{\partial \tau} + i e^{i\Delta k(\tau + r)} \chi A_1 = 0, \quad \frac{\partial A_1}{\partial r} + i e^{-i\Delta k(\tau + r)} \chi A_0 = 0, \tag{1}$$

где коэффициент связи дифрагированных волн χ выражается через свертки тензора диэлектрической проницаемости $\Delta \varepsilon_{ij} = -\varepsilon_{ik}\varepsilon_{lj}\,p_{klmn}U_{mn}$ (ε_{ij},U_{mn} – компоненты тензора диэлектрической проницаемости и тензора УЗ деформации) с векторами поляризации \vec{e}_0, \vec{e}_1 дифрагированных волн нулевого и первого порядка, то есть $\chi = k^2(\vec{e}_0\Delta\hat{\epsilon}\vec{e}_1)/2$; $\tau = x\sin\phi - z\cos\phi$, $r = x\sin\phi + z\cos\phi$; $k = 2\pi n/\lambda_0$; $\Delta k = (\pi f_0\lambda_0/n_o\upsilon^2)\Delta f$ — отстройка фазового синхронизма ($\Delta f = (f - f_0)$ — отстройка частоты УЗ волны от центральной f_0) [1]. Если искать решение системы уравнений (1) методом Римана с использованием граничных условий: $A_0(x=0) = A_{i0}$, $A_1(x=0) = 0$, то общее решение можно представить в виде:

$$A_{0}(r) = A_{i}(r) - \frac{1}{2} \nu \int_{-1}^{+1} A_{i} \left[r - g(1 - q) \right] e^{-i\delta g(1 - q)} \frac{J_{1} \left(\nu \sqrt{1 - q^{2}} \right)}{\sqrt{1 - q^{2}}} dq, \qquad (2)$$

$$A_{1}(\tau) = -i\frac{1}{2}\nu e^{-i2\delta\tau} \int_{-1}^{+1} A_{i} \left[g(1-q) - \tau \right] e^{-i\delta g(1-q)} J_{0} \left(\nu \sqrt{1-q^{2}} \right) dq,$$
 (3)


где $v = \chi l/kn^2\cos\varphi$ — индекс модуляции УЗ волной; $g = l\sin\varphi$ — геометрический параметр; $\delta = \Delta k/2\sin\varphi$; $J_0(x)$, $J_1(x)$ — функции Бесселя первого рода, соответственно нулевого и первого порядка. При этом индекс модуляции выражается через коэффициент акустооптического качества M_2 : $v = \frac{2\pi}{\lambda_0\cos\varphi}\sqrt{\frac{M_2P_al}{2h}}$, где P_a —

мощность ультразвука, h — ширина пьезопреобразователя. Выражения (2), (3) позволяют рассчитать амплитудное распределение дифрагированного пучка нулевого и первого порядка для любого уровня акустической мощности и широкого класса падающих световых пучков. Эффективность АО дифракции (η) определяется соотношением

$$\eta = \frac{\int_{-\infty}^{+\infty} |A_{1}(\tau)|^{2} d\tau}{\int_{-\infty}^{+\infty} |A_{0}(r)|^{2} dr + \int_{-\infty}^{+\infty} |A_{1}(\tau)|^{2} d\tau}.$$
(4)

Численные расчеты проводились для АО дифракции излучения с длиной волны $\lambda_0 = 532$ нм на медленной сдвиговой УЗ волне, распространяющейся под малым углом $\phi <<1$ к оси [110] кристалла TeO_2 . Коэффициент АО качества для линейно-поляризованного падающего волнового пучка равен [1]: $M_2 = 34,5\cdot 10^{-18} \, \mathrm{c}^3/\mathrm{r}$. БСП имеет вид: $A_i(r) = AJ_0(kr\sin\gamma)$, где $A(\gamma)$ — амплитуда (угол конусности) БСП.

На рис. 2, a для падающего БСП представлена зависимость дифракционной эффективности η от мощности ультразвука P_a , рассчитанная по формулам (2) – (5), при различных значениях длины АО взаимодействия l. Зависимость эффективности АО дифракции η от отстройки частоты УЗ волны от брэгговской (Δf) при различных длинах АО взаимодействия представлена на рис. 2, δ .

Рис. 2. Зависимость эффективности дифракции η бесселевого светового пучка η от мощности УЗ волны P_a при точном брэгговском синхронизме (a);

зависимость эффективности дифракции η БСП от отстройки частоты УЗ волны от брэгговской Δf при различных длинах АО взаимодействия l: 1 –3 мм, 2 – 5 мм, 3–10 мм (кристалл TeO₂, λ_0 = 532 нм, n_0 = 2,29, M_2 = 34,5·10⁻¹⁸ e³/г, h = 4 мм, γ = 0,5°, f_0 =100 МГц, Δf = 0 (a), P_a = 0,15 Вт) (δ)

Максимум эффективности дифракции ($\eta=1$) достигается при достижении длины AO взаимодействия l=10 мм. Из рис. 2, δ следует, что при уменьшении длины AO взаимодействия имеет место увеличение ширины полосы пропускания AO модулятора по уровню 50 % от максимального значения. Ширина полосы пропускания устройства при изменении длины AO взаимодействия в пределах $5\div10$ мм изменяется в пределах $35\div50$ МГц.

2. Экспериментальные результаты

На рис. 3 представлена экспериментальная схема исследования AO дифракции БСП на продольной УЗ волне.

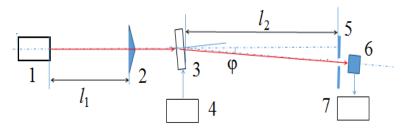
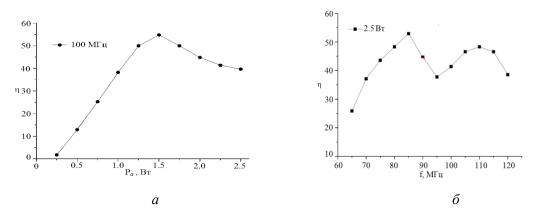



Рис. 3. Схема АО дифракции БСП на продольной УЗ волне:

1 — лазер OBIS LS 532-20 (длина волны 532 нм, мощность 20 мВт, диаметр пучка 0,75 мм; расходимость 0,9 мрад.; 2 — аксиконы AX252-A (Thorlabs); 3 — АО ячейка на TeO $_2$ с центральной частотой f_0 = 100 МГц; 4 — генератор высокочастотный RIGOL DG5071; 5 — диафрагма; 6 — фотодиодный приемник S121C (Thorlabs) ;7 — измеритель мощности LaserStar (Ophir)

На рис. 3, за счет угловой расходимости, световой пучок с диаметром на входе 0,75 мм, пройдя расстояние $l_1=1$ м, приобретает диаметр равный 1,5 мм (на входе в аксикон). Коэффициент преобразования электрической мощности в акустическую составляет $\sim 0,1$.

На рис. 4 представлена зависимость эффективности АО дифракции η от частоты УЗ волны f, подаваемой УЗ генератором (4) на ПП (3) на рис. 3.

 $Puc.\ 4.\$ Зависимость эффективности дифракции η от электрической мощности, вырабатываемой ВЧ генератором (a);

зависимость эффективности дифракции η от частоты УЗ волны, вырабатываемой генератором (4) на рис. З (кристалл TeO₂, электрическая мощность P_9 = 2,5 Bt, h = 4 мм, l = 10 мм) (δ)

Из рис. 4, a следует, что для падающего БСП эффективность дифракции при строгом выполнении условия Брэгга достигает 56 %. Ширина полосы пропускания модулятора, как следует из рис. 4б составляет \sim 35 МГц.

Заключение

Таким образом, при АО преобразовании БСП на продольной УЗ волне достижима эффективность АО взаимодействия ~56 % при акустической мощности ~0,15 Вт и длине АО взаимодействия 10 мм. Ширина полосы пропускания АО модулятора может составить ~35÷50 МГц. Теоретические результаты на основе двумерной теории связанных волн согласуются с полученными экспериментальными данными.

Библиографические ссылки

- 1. Блистанов А. А. Кристаллы квантовой и нелинейной оптики. М.: МИСИС. 2000.
- 2. Durnin. J. Exact solutions for nondiffracting beams // J. Opt. Soc. Am. 1987. V.4, № 4. P. 651–654.
- 3. *Белый В. Н.* Дифракция световых пучков на затухающих ультразвуковых волнах в оптически изотропных средах / В. Н. Белый, И. Г. Войтенко, Г. В. Кулак // Журн. прикл. спектр. 1992. Т. 56, № 5-6. С. 831–836.