Интеграция VR-комплексов с оптико-физическими датчиками систем биологической обратной связи для оценки психической напряжённости лиц ответственных профессий

О. С. Бурделёв¹⁾, В. А. Фираго²⁾

1) Научно-методическое учреждение Белорусского государственного университета «Республиканский центр проблем человека», Минск, Беларусь, e-mail: jahhu@yandex.ru

2) Белорусский государственный университет, Минск, Беларусь, e-mail: firago@bsu.by

На примере интеграции набора оптико-физических физиологических датчиков с комплексом виртуальной реальности (VR) рассматриваются современные тренды применения систем биологической обратной связи (БОС-VR) для объективной оценки уровня психической напряжённости специалистов ответственных профессий в экстремальных и аварийных условиях деятельности. Особое внимание уделяется применению неинвазивных методов регистрации пульсовых, дыхательных и температурных показателей для адаптивного управления виртуальной тренировочной нагрузкой в стрессовых и экстремальных сценариях.

Ключевые слова: БОС-VR; фотоплетизмография; психофизиологические датчики; психическая напряжённость; адаптивное управление.

Integration of VR complexes with optical-physical sensors of biological feedback systems for assessing the mental stress of individuals in responsible professions

O. C. Burdzialiou, V. A. Firago

1)Republican Center for Human Problems of Belarusian State University, Minsk, Belarus, e-mail: jahhu@yandex.ru
Belarusian State University, Minsk, Belarus, e-mail: firago@bsu.by

The paper analyzes the difficulties encountered by foreign students in the process of working with printed text (folding information, developing long-term memory, highlighting the main idea in small of the text and retelling it). Using the example of integrating a set of optical-physical physiological sensors with a virtual reality (VR) complex, we examine current trends in the use of biological feedback systems (BOS-VR) for objectively assessing the level of mental stress experienced by professionals in high-responsibility occupations in extreme and emergency conditions. Particular attention is paid to the use of non-invasive methods for recording pulse, respiratory, and temperature indicators for adaptive control of virtual training loads in stressful and extreme scenarios.

Keywords: BOS-VR; photoplethysmography; psychophysiological sensors; mental stress; adaptive control.

Ввеление

Современные технологии виртуальной реальности (VR) в сочетании с системами биологической обратной связи (БОС) открывают перспективы дальнейшего развития компьютеризированных тренажеров для объективной оценки и управления

психофизиологическим состоянием человека в условиях стрессовых и экстремальных нагрузок [1–4]. Возможность создавать тренировочные сценарии сложных ситуаций в совокупности с объективной оценкой основных физиологических параметров лиц, принимающих решения, наиболее привлекательные стороны концепции развития современных VR-тренажеров с системой биологической обратной связи [1, 3–6]. Высокая реалистичность и интерактивность, свойственная этим тренажерам, обеспечивает эффективное обучение действиям в стрессовых условиях и быстрое освоение необходимых навыков. Также появляется возможность объективного отбора лиц сложных и ответственных профессий, экономя при этом существенные средства на проведение их предварительного обучения.

Основа системы обратной биологической связи — комплекс оптико-физических датчиков. Эти датчики позволяют следить за текущими значениями физиологических параметров организма, что дает информацию для управления психической нагрузкой, т. е. последовательностью заданий выполняемого сценария. Оптико-физические датчики регистрируют изменения оптических свойств тканей при пульсовых колебаниях кровенаполнения сосудов. Фотоплетизмографический датчик, содержащий инфракрасный полупроводниковый излучатель и фототранзистор, позволяет неинвазивно регистрировать динамику сердечного ритма и вариабельность пульса, что в совокупности с данными других датчиков позволяет рассчитать индекс психической напряжённости, отражающий уровень функционального состояния центральной нервной системы.

В докладе на примере апробации комплекса БОС-VR с внедренными оптикофизическими и электронными датчиками рассматриваются направления дальнейшего развития методик применения биологической обратной связи в имитационных тренажерах [1, 2, 4].

1. Проблемы, требующие своего решения, при введении БОС

При формировании проектов, имеющих целью создание соответствующего VR-БОС тренажера, приходится решать и ряд методических проблем, возникающих при получении данных от комплекса датчиков, их обработки и формирования на их основе оценки психоэмоционального состояния тренируемого оператора или специалиста [1, 5-8].

При создании VR-БОС комплекса, разработанного в Республиканском центре проблем человека и предназначенного для объективной оценки психоэмоционального состояния и адаптивного управления нагрузкой в тренировочных сценариях, пришлось решать следующие задачи:

- создание аппаратно-программного модуля для неинвазивной регистрации физиологических параметров;
- разработка методики расчёта индекса напряжённости по данным используемого набора датчиков;
- создание алгоритмов внедрения потока данных в систему VR, необходимое для обеспечения в реальном масштабе времени обратной связи между физиологическим состоянием обучаемого и предъявляемыми визуально-аудиальными сценариями;

• апробация эффективности адаптивной коррекции VR-сценариев в зависимости от уровня стресса и функционального состояния обучаемого.

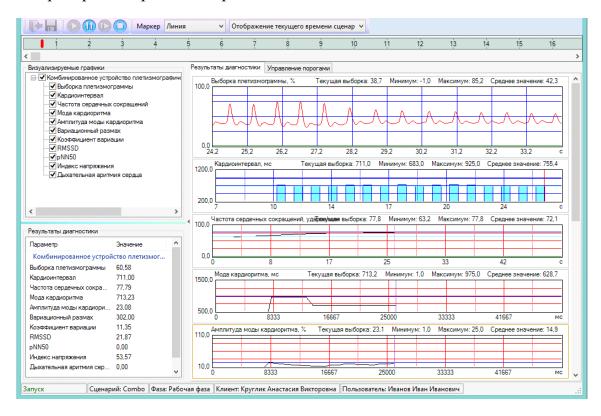
Наиболее удобным для неинвазивной оценки частоты сердечных сокращений и вариабельности ритма оказался фотоплетизмографический датчик. Исследование зависимости амплитуды пульсовых колебаний фотоплетизмограммы от длины волны показало, что целесообразно использовать ее регистрацию в области спектра 880 нм [9–12]. В этой области спектра излучение проникает глубже в ткань по сравнению с излучением в видимой области спектра. Однако, этот вопрос требует дальнейшего исследования при применении дифференциальной оценки кровенаполненности сосудов микроциркуляторного русла, поскольку двухволновой фотоплетизмографический датчик с регистрацией переменных и постоянных составляющих фотоплетизмограмм даст возможность сравнивать кровенаполненность петлевых капилляров в коже с кровенаполненностью сосудов более глубоких слоев тканей.

Для получения других данных, необходимых для комплексного определения индекса психической напряженности на основе анализа пульсовых интервалов (RR-интервалы) и вариационного пульсометрического анализа, использовались:

- датчик кожно-гальванической реакции (КГР) для оценки эмоциональной активации;
- датчик дыхания на эффекте Холла для анализа дыхательных паттернов и частоты;
- температурный датчик, регистрирующий изменения периферического кровообращения [3, 5].

При использовании фотоплетизмографических (ФПГ) и кожно-гальванических (КГР) датчиков в VR-БОС-комплексах возникают трудности, связанные с влиянием на регистрируемые сигналы внешних и физиологических факторов. ФПГ-датчик чувствителен к влиянию движений, вибраций, освещённости и температуры кожи, что может вызывать артефакты и снижать точность анализа сердечного ритма. Амплитуда пульсовых колебаний снижается при охлаждении или стрессовой вазоконстрикции, что осложняет вычисление кардиоинтервалов. КГРдатчик, зависит от качества контакта электродов, влажности, состояния кожи и стабильности температуры, что вызывает снижение амплитуды при длительном воздействии стимулов. Совместная обработка сигналов требует синхронизации, фильтрации и нормализации, поскольку временные характеристики КГР и ФПГ различаются. Для интегральной оценки функционального состояния пользователя и уровня стресса используется индекс психической напряжённости, рассчитываемый по методике Баевского [13]. Несмотря на указанные сложности, сочетание ФПГ и КГР-датчиков позволяет комплексно оценивать физиологические и эмоциональные реакции в реальном времени, повышая достоверность данных в системе биологической обратной связи.

Для определения степени участия грудного либо абдоминального отдела в процессе дыхания в системе БОС используются два типа датчиков — на основе эффекта Холла и тензометрический. Датчик Холла отличается высокой чувствительностью к малым движениям грудной клетки и простотой интеграции, но чувствителен к внешним магнитным полям и требует точной калибровки. Тензометриче-


ский датчик обеспечивает высокую точность измерения амплитуды дыхательных движений и устойчив к помехам, однако требует плотного крепления и может вызывать дискомфорт при длительном использовании.

2. Пример апробации и применения

Апробация комплекса проводилась в лаборатории психофизиологического обеспечения Белорусской АЭС, где VR-БОС-комплекс применяется для тренировки персонала, критически влияющего на безопасность эксплуатации. Разработанная система позволяет объективно оценивать функциональное состояние специалистов и формировать рекомендации по индивидуальной саморегуляции и профессиональной полготовке.

В настоящее время ведутся разработки VR-сценариев, в которых моделируются действия при аварийных и нештатных ситуациях, с контролем внимания при работе с множественными консолями, а также адаптации оператора к дефициту времени и высокому риску ошибок. Система физиологической обратной связи фиксирует динамику пульса, КГР и дыхания, отображая их на экране инструктора. Это позволяет оценить психофизиологическую устойчивость персонала, выявлять индивидуальные реакции на стрессовые стимулы и корректировать режимы тренировки с учётом особенностей каждого обучаемого.

Дополнительно система обеспечивает возможность анализа вариабельности измеряемых параметров и интеграции данных с адаптивными алгоритмами VR-среды, что повышает точность оценки функционального состояния и эффективность тренировки в реальном времени.

Форма представления информации с фотоплетизмографического датчика при исполнении сценария

В докладе приводятся результаты оценок эффективности применения VR-БОС-комплекса при тренировках персонала.

Заключение

Интеграция VR-технологий с фотоплетизмографическими, кожно-гальваническими, дыхательными и температурными датчиками позволяет создавать современные тренажерные комплексы с биологической обратной связи, которые дают возможность объективно в реальном масштабе времени оценивать психофизиологическое состояние человека в условиях стрессовых и экстремальных нагрузок. Использование описываемого набора датчиков обеспечивает комплексную регистрацию сердечного ритма, вариабельности пульса, эмоциональной активации, дыхательных паттернов и изменений периферического кровообращения, что позволяет рассчитывать индекс психической напряжённости по методике Баевского.

Применение VR-БОС-комплекса с адаптивной обратной связью повышает эффективность обучения действиям в стрессовых ситуациях, позволяет корректировать нагрузку в реальном времени и улучшает качество подготовки специалистов ответственных профессий. Несмотря на технические и методические сложности, связанные с наличием влияния артефактов на регистрируемые сигналы и индивидуальными особенностями тренируемых, комплекс демонстрирует высокую информативность и объективность оценки функционального состояния, открывая перспективы для её применения в энергетике, медицине, силовых структурах, авиации и других сферах, где критически важна точность действий и стрессоустойчивость лиц, принимающих ответственные решения.

Библиографические ссылки

- 1. Лебедев А. Н. Биологическая обратная связь в психофизиологии человека. М.: Наука, 2008.
- 2. Гребенников И. А. Психофизиология операторской деятельности. СПб.: Речь, 2010.
- 3. Романов П. И. Физиология труда и стресса. СПб.: Питер, 2014.
- 4. Щербатых Ю. В. Стресс и стрессоустойчивость человека. М.: Эксмо, 2012.
- 5. Васильев В. П. Методы регистрации физиологических сигналов. Минск: БГУ, 2015.
- 6. *Троицкий А. В.* Системы биологической обратной связи: инженерные решения и программная реализация. СПб.: БХВ-Петербург, 2016.
- 7. Лурия А. Р. Основы нейропсихологии. М.: Академия, 2003. 384 с.
- 8. *Судаков К. В.* Системные механизмы саморегуляции функций организма. М.: Медицина, 1999.
- 9. Тихонов В. Н., Колесников А. В. Фотоплетизмография: принципы, методы и приборы. М.: Техносфера, 2018.
- 10. Webster J. G. Design of Pulse Oximeters. Воса Raton: CRC Press, 1997. (инженерные основы фотоплетизмографических измерений)
- 11. Wearable Photoplethysmographic Sensors Past and Present /T. Tamura [et al.] // Electronics. 2014. Vol. 3, Iss: 2, P. 282–302.
- 12. Соловьёв С. А. Аппаратные средства регистрации физиологических сигналов: основы проектирования. М.: Радиотехника, 2020.
- 13. Баевский Р. М., Берсенева А. П. Оценка адаптационных возможностей организма и риск развития заболеваний. М.: Медицина, 1997. 234 с.