Фотостабильность коньюгатов трикарбоцианинового красителя и ультрадисперсного алмаза при комплексообразовании с биологическими модельными структурами

Д. С. Тарасов¹⁾, Н. В. Лабода¹⁾, А. А. Луговский²⁾, Г. А. Гусаков¹⁾, М. П. Самцов¹⁾

1) Институт прикладных физических проблем им. А. Н. Севченко Белорусского государственного университета, Минск, Беларусь, e-mail: dmitrij-tarasov@list.ru
2) Республиканский научный центр проблем человека Белорусского государственного университета, Минск, Беларусь, e-mail: lugovski1111@gmail.com

Приведены результаты исследования фотофизических и фотохимических свойств индотрикарбоцианинового красителя ковалентно связанного с ультрадисперсным алмазом в различных средах в сравнении с исходным красителем.

Ключевые слова: трикарбоцианиновые красители; ультрадисперсный алмаз; лазерная флуоресцентная спектроскопия; фотофизические и фотохимические свойства.

Photostability of tricarbocyanine dye and ultradispersed diamond conjugates upon complexation with biological model structures

D. S. Tarasau¹⁾, N. V. Laboda¹⁾, A. A. Lugovsky ²⁾, G. A. Gusakov¹⁾, M. P. Samtsov¹⁾

¹⁾A. N. Sevchenko Institute of Applied Physical Problems of Belarusian State University,
Minsk, Belarus, e-mail: dmitrij-tarasov@list.ru

²⁾Republican Scientific Center for Human Problems of Belarusian State University, Minsk,
Belarus, e-mail: lugovski1111@gmail.com

The results of the study of photophysical and photochemical properties of indotricarbocyanine dye covalently bound to ultradispersed diamond in various environments are presented in comparison with the original dye.

Keywords: tricarbocyanine dyes; ultradispersed diamond; laser fluorescence spectroscopy; photophysical and photochemical properties.

Введение

Ультрадисперсные алмазы (УДА) обладают низкой токсичностью и биосовместимостью [1], частицы имеют развитую поверхность, функциональный состав которой можно изменять. В связи с этим они представляют собой удобную платформу для создания на их основе комплексов обеспечивающих направленную доставку лекарственных препаратов и визуализацию биологических процессов *in vivo* [2]. Для эффективной оптической диагностики в биомедицине требуются агенты, обладающие полосами поглощения и люминесценции в области прозрач-ности биологических тканей. Спектральные свойства УДА не удовлетворяют этим требованиям. Получение люминесцентных УДА является возможным, однако данный процесс

сопряжен с технологическими трудностями [2]. В связи с этим представляется перспективным создание комплексов детонационных наноалмазов с молекулами органических красителей. В таких комплексах УДА обеспечивают селективность накопления и инертность, а молекулы красителя — требуемые оптические свойства. Такие наноконьюгаты можно получать без применения сложных методик, а разнообразие и возможность модификации органических красителей позволяет синтезировать их комплексы с требуемыми для конкретного применения спектрально-люминесцентными свойствами.

Результаты исследования

В данной работе представлены результаты исследования фотофизических и фотохимических свойств комплекса индотрикарбоцианинового красителя, описанного в работах [3, 4], с ультрадисперсными наноалмазами в модельных биологических средах – фосфатно-солевой буфер (ФСБ) и раствор в ФСБ бычьего сывороточного альбумина (БСА) фирмы Serva (Германия). Основная полоса поглощения и спектр флуоресценции данного красителя расположены в спектральной области наибольшей прозрачности биологических тканей. Как было ранее показано, краситель плохо растворяется в воде, его водные растворы готовятся с применением ультразвуковой обработки [4]. Спектр поглощения индотрикарбо-цианинового красителя (рис. 1) в водной среде характеризуется двумя основными полосами поглощения. Широкая полоса поглощения в области 600–800 нм соответствует мономерам и ассоциатам Н-типа, а узкая полоса с максимумом на 515 нм — Н*-агрегатам красителя [5]. Н*-агрегаты красителя представляют собой супрамолекулярные наноструктурированные объекты [3].

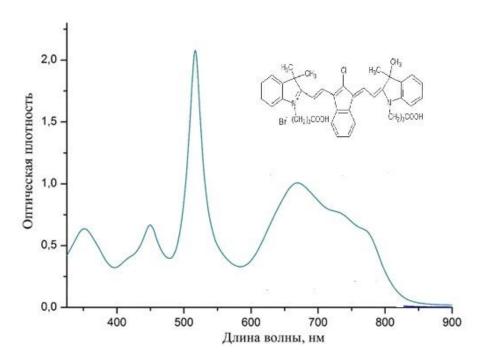


Рис. 1. Спектры поглощения водного раствора индотрикарбоцианинового красителя

В качестве исходного материала для создания комплексов УДА-краситель использовались наноалмазы детонационного синтеза марки УДА-ГО производства ЗАО «Синта» (Минск, Беларусь). Исходный порошок УДА подвергался предварительной термоокислительной обработке на воздухе при $T=400\,^{\circ}\mathrm{C}$ с целью первичной монофункционализации и увеличения содержания карбоксильных групп на поверхности наночастиц. Далее к поверхности окисленного УДА производилась прививка гексаметилендиаминового линкера с терминальной NH_2 -группой. Дальнейшее ковалентное связывание молекул красителя с наночастицами алмаза осуществлялось в ходе реакции Микаямы. Спектр ИК-поглощения полученного комплекса (рис. 2) содержит полосы красителя и наноалмаза. По сравнению со спектром исходного УДА наблюдается снижение интенсивности и низкочастотный сдвиг полосы колебания связей С=О. Кроме того, в результате комплексообразования появляется интенсивная полоса Амид I на частоте $1660\,^{\circ}\mathrm{cm}^{-1}$, что подтверждает ковалентное связывание красителя с наноалмазом вследствие образования амидных связей. После синтеза комплекса несвязанный краситель отмывался дихлорэтаном.

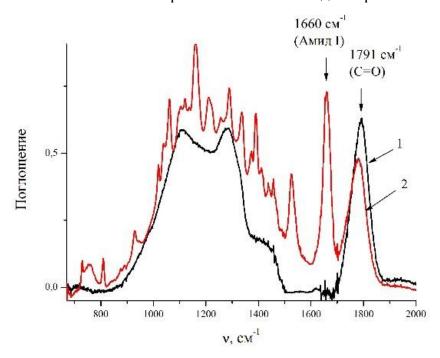


Рис. 2. Спектры ИК-поглощения исходного УДА (1) и комплексов УДА-краситель (2)

Спектральные и фотофизические свойства красителя в ФСБ в несвязанном состоянии и в комплексе с УДА значительно различаются. Так положения максимумов спектров поглощения, флуоресценции и возбуждения флуоресценции красителя в ФСБ расположены на 709 нм, 739 нм и 709 нм соответственно. Положение максимумов спектров красителя в комплексе с УДА сдвинуто в длинноволновую область: спектра поглощения на 25 нм (734 нм), спектра флуоресценции на 25 нм (757 нм) и в спектре возбуждения флуоресценции на 28 нм (737 нм). При этом длительность затухания флуоресценции образцов слабо различаются и составляют для незсвязанного красителя 0,33 нс и 0,35 нс для красителя связанного с УДА. Квантовые выходы фотодеструкции красителя в ФСБ при концентрации порядка 0,7 мкМ при

облучении полупроводниковым лазером 740,7 нм составил $2,0\cdot10^{-3}$ для несвязанного красителя и $4,2\cdot10^{-6}$ в комплексе с УДА. Отличие квантовых выходов фотодеструкции почти на 3 порядка указывает на то, что связывание с УДА повысило фотостабильность красителя.

Исследованы фотофизические свойства красителя и красителя в комплексе с УДА в ФСБ в присутствие БСА (15 мкМ). Концентрация красителя составляла порядка 0,35 мкМ (в комплексе с УДА оценивалась по спектрофотометрическим измерениям). Полученные спектры поглощения и возбуждения флуоресценции показаны на рис. 3 и рис. 4. Сразу после введения бычьего сывороточного альбумина (БСА) в растворы красителя в ФСБ наблюдается сдвиг максимумов спектров поглощения и флуоресценции в длинноволновую область по сравнению с раствором без БСА. Так для несвязанного с УДА красителя максимум поглощения располагается на 746 нм, флуоресценции – 757 нм. При этом наблюдается увеличение длительности затухания флуоресценции до 1,54 нс. Фотофизические свойства красителя оказываются не стабильны с течением времени. Так, в результате 2 часов инкубации при 37 °C максимум поглощения сместился в коротковолновую область на 9 нм (737 нм), полуширина полосы поглощения изменилась с 67 нм до 62 нм. Максимум флуоресценции расположился на 751 нм, полуширина полосы флуоресценции уменьшилась с 64 нм до 52 нм, а длительность затухания флуоресценции возросла до 1,65 нс. Аналогичные изменения произошли и для красителя в комплексе с УДА. В растворе с БСА максимум поглощения располагается на 741 нм (полуширина – 95 нм), аксимума флуоресценции на 758 нм (полуширина – 64 нм), а длительность затухания флуоресценции увеличилась до 1,55 нс. После 2 часов инкубации при

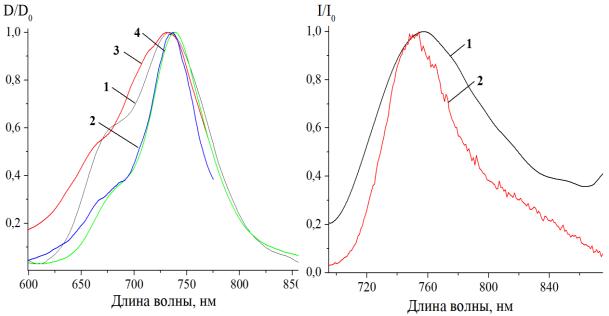


Рис. 3. Спектры поглощения (1,3) и возбуждения флуоресценции (2,4) комплекса трикарбоцианинового красителя с УДА -1,3 и при связывании с БСА -2,4 в ФСБ

Puc.4. Спектры флуоресценции комплекса трикарбоцианинового красителя с УДА — 1 и при связывании с БСА — 2 в ФСБ при возбуждении на 650 нм

37 °C также наблюдается смещение максимумов полос поглощения и флуоресценции в коротковолновую область с уменьшением полуширины и увеличением длительности затухания флуоресценции. Максимум поглощения располагается на 738 нм (полуширина — 66 нм), максимум флуоресценции — 752 нм (полуширина — 59 нм). Длительность затухания флуоресценции увеличилась до 1,69 нс. Выявленные изменения фотофизических характеристик красителя свидетельствуют об образовании его комплексов с БСА.

В растворах в ФСБ с БСА также наблюдается необратимое уменьшение концентрации красителя при засветке в его длинноволновую полосу поглощения светом полупроводникового лазера с длиной волны 740,7 нм. Квантовые выходы фотодеструкции для красителей без и с УДА после 2 часов инкубации с БСА равны $9.5 \cdot 10^{-7}$ и $8.7 \cdot 10^{-7}$ соответственно.

Заключение

Таким образом, показано, что индотрикарбоцианиновый краситель образует ковалентносвязанные комплексы с ультрадисперсными алмазами детонационного синтеза. Исследованы фотофизические свойства красителя в комплексе с УДА при взаимодействии с сывороточным альбумином в растворе в фосфатно-солевом буфере. Установлено, что облучение растворов полученных комплексов с БСА излучением полупроводникового лазера с длиной волны $\lambda = 740,7$ нм приводит к необратимым уменьшениям концентрации красителя и образованию фотопродуктов, определены соответствующие квантовые выходы фотодеструкции. Полученные комплексы могут найти применения в области биомедицины для визуализации биологических процессов.

Библиографические ссылки

- 1. Adsorption of drugs on nanodiamond: toward developments of a drug delivery platform / V. N. Mochalin [et al.] // Molecular Pharmaceutics. 2013. Vol. 10, № 10. P. 3728–3735.
- 2. Luminescent nanodiamonds for biomedical applications / J. M. Say [et al.] // Biophysical Reviews. 2011. Vol. 3, № 4. P. 171–184.
- 3. Morphology and optical properties of self-assembled nanostructures of a novel indotricarbocyanine dye / N. V. Belko [et al.] // Журнал прикладной спектроскопии. 2016. Т. 83, № 6-16. С. 89–90.
- 4. The method to create the self-organized nanostructures based on indotricarbocyanine dye / N. V. Belko [et al.] // Physics, Chemistry and Application of Nanostructures: Reviews and Short Notes to Nanomeeting-2017. 2017. P. 441–444.
- 5. *Herz, A. H.* Aggregation of sensitizing dyes in solution and their adsorption onto silver halides // Advances in Colloid and Interface Science. 1977. Vol. 8, № 4. P. 237–298.