Взаимодействие резонансных сред с излучением комплексной частоты

Д. В. Новицкий

Институт физики им. Б. И. Степанова НАН Беларуси, Минск, Беларусь, e-mail: d.novitsky@ifanbel.bas-net.by

В последние годы активно исследуется распространение и преобразование волн, имеющих комплексную частоту. Такие волны позволяют задействовать нули и полюса рассеяния (резонансы), которые располагаются на комплексных частотах, и имитировать поглощение и усиление излучения в пассивных системах. В докладе дается краткий обзор этого направления исследований и приводятся результаты, полученные автором при изучении взаимодействия оптического излучения комплексной частоты с резонансными средами.

Ключевые слова: нули и полюса рассеяния; резонансно поглощающая среда; уравнения Максвелла-Блоха; виртуальное поглощение; виртуальное усиление.

Interaction of resonant media with complex-frequency radiation

D. V. Novitsky

B. I. Stepanov Institute of Physicsc of the NAS of Belarus, Minsk, Belarus, e-mail: d.novitsky@ifanbel.bas-net.by

In recent years, the propagation and transformation of waves with complex frequencies has been actively studied. Such waves make it possible to use scattering zeros and poles (resonances) located at complex frequencies and to emulate absorption and amplification of radiation in passive systems. This talk provides a brief overview of this area of research and presents the results obtained by the author in studying the interaction of complex-frequency optical radiation with resonant media.

Keywords: scattering zeros and poles; resonant absorbing medium; Maxwell-Bloch equations; virtual absorption; virtual gain.

В 1962 г. белорусский физик А. П. Хапалюк предсказал и теоретически проанализировал эффект резонансного поглощения когерентного излучения, падающего с двух сторон на слой поглощающей среды [1]. При определенных соотношениях между толщиной слоя и его комплексным показателем преломления интерференция излучения внутри среды делает возможной полное поглощение его энергии. Идея была переоткрыта в 2010 г. [2] и получила известность в современной оптике под названием «когерентное идеальное поглощение». Этому эффекту посвящена обширная литература и ряд обзорных статей [3].

Согласно современным представлениям, когерентное идеальное поглощение возникает, когда на действительной частоте имеет место нуль рассеяния, что возможно при наличии в системе поглощающего материала. В общем случае нули рассеяния оптических систем располагаются на комплексных частотах, а потому монохроматическое излучение может поглощаться лишь частично. Аналогичные умозаключения справедливы и для полюсов рассеяния: полюс на действительной оси отвечает самовозбуждению системы при наличии в ней усиливающего материала (порог лазерной генерации), а на комплексной частоте — одному из ее

резонансов. Изучение динамики нулей и полюсов рассеяния является достаточно мощным инструментом анализа оптического отклика систем, позволившим в последние годы выявить различные сценарии и аномалии в рассеянии света [4].

Следующим шагом стало возникновение идеи виртуального поглощения, которое возникает при непосредственном возбуждении нуля рассеяния излучением комплексной частоты [5]. Такое излучение, очевидно, характеризуется экспоненциально возрастающей амплитудой (огибающей). Если на слой пассивной (непоглощающей) среды с двух сторон падают волны, экспоненциальный рост амплитуды которых определяется мнимой частью комплексной частоты нуля рассеяния, наблюдается имитация поглощения: излучение отсутствует на выходе из среды и накапливается внутри нее до тех пор, пока продолжается ее облучение волнами с возрастающей амплитудой. После отключения возбуждающих волн энергия излучения покидает среду, не испытав реального поглощения. Можно сказать, что условия когерентного идеального поглощения и виртуального поглощения как бы дополняют друг друга: в первом случае используются излучение с действительной частотой и среда с комплексными параметрами (показателем преломления), тогда как во втором — пассивная среда и излучение комплексной частоты.

Концепция виртуального поглощения может быть реализована не только для электромагнитного излучения, но и для других типов волн, в том числе упругих [6] и акустических [7], и рассматривалась применительно к самым разным объектам, включая метаповерхности [8] и плазму [9]. Аналогичным образом было введено представление о виртуальном усилении при взаимодействии экспоненциально затухающего излучения с поглощающей средой [10]. В настоящее время круг эффектов и результатов, связанных с использованием излучения комплексной частоты, весьма широк, в чем можно убедиться из свежей обзорной статьи [11].

В настоящем докладе сделан краткий обзор явлений, связанных с использованием излучения комплексной частоты, а также излагаются результаты собственных теоретических исследований автора [12, 13], посвященных виртуальному поглощению и усилению света в резонансных средах.

Математическая модель взаимодействия резонансных сред с электромагнитными волнами, амплитуда которых экспоненциально нарастает или затухает, основана на системе уравнений Максвелла—Блоха в двухуровневом приближении. В рамках этой модели рассчитана динамика распространения двух встречных волн с экспоненциально нарастающей амплитудой в слое резонансно поглощающей среды (первоначально заселен только основной уровень) и продемонстрирован эффект виртуального поглощения, сопровождающийся частичным заселением возбужденного уровня. После резкого выключения возбуждающих волн излучение покидает среду, причем в спектре высвобождаемого излучения наблюдается характерный провал на резонансной частоте, обусловленный частичным поглощением света. Виртуальное поглощение наблюдается и в случае возбуждённой (усиливающей) резонансной среды (возбужденный уровень заселен сильнее, чем основной). В этом случае основная часть энергии, запасенной в среде, испускается в виде отдельного импульса, длительность и момент появления которого зависят от параметров падающих на среду волн.

Нелинейные свойства резонансной среды практически не оказывают влияния на эффект виртуального поглощения. Ситуация совершенно иная для виртуального усиления, когда осуществляется экспоненциально быстрое выключение непрерывного излучения: величина интенсивности излучения на непрерывном участке принципиально важна. В случае низкоинтенсивного излучения наблюдается характерная для виртуального усиления «контринтуитивная» картина возрастания амплитуды излучения вдоль толщины слоя поглощающей среды; эффективность такого усиления зависит от времени затухания поля. В случае излучения высокой интенсивности виртуальное усиление отсутствует, если выключение поля происходит после достижения средой насыщенного состояния, но может наблюдаться в нестационарном режиме с эффективностью, зависящей от момента выключения. При виртуальном усилении и при взаимодействии с усиливающей средой наблюдается существенное сужение спектра излучения, прошедшего через резонансную среду, которое не имеет места в режиме насыщения.

Полученные результаты важны для понимания фундаментальных оптических процессов, ассоциированных с аномалиями рассеяния (нулями и полюсами), в условиях реальных (квантовых) сред. Практические приложения эффектов, связанных с использованием излучения комплексной частоты, включают концентрацию энергии излучения в малых объемах, компенсацию потерь в различных фотонных структурах и симуляцию поведения поглощающих и усиливающих систем в тех случаях, когда реальное поглощение или усиление использовать нежелательно.

Библиографические ссылки

- 1. *Хапалюк А. П.* Электромагнитное поле внутри плоскопараллельного слоя в режиме резонансного поглощения // Доклады АН БССР. 1962. Т. 6, № 5. С. 301–304.
- 2. Coherent Perfect Absorbers: Time-Reversed Lasers / Y. D. Chong [et al.] // Phys. Rev. Lett. 2010. Vol. 105, iss. 5. P. 053901.
- 3. Coherent perfect absorbers: linear control of light with light / D. G. Baranov [et al.] // Nature Rev. Mater. 2017. Vol. 2. P. 17064.
- 4. Anomalies in light scattering / A. Krasnok [et al.] // Adv. Opt. Photon. 2019. Vol. 11, iss. 4. P. 892–951.
- 5. *Baranov D. G.* Coherent virtual absorption based on complex zero excitation for ideal light capturing / D. G. Baranov, A. Krasnok, A. Alu // Optica. 2017. Vol. 4, iss. 12. P. 1457–1461.
- 6. Coherent virtual absorption of elastodynamic waves / G. Trainiti [et al.] // Sci. Adv. 2019. Vol. 5, iss. 8. P. eaaw3255.
- 7. Direct experimental observation of total absorption and loss compensation using sound waves with complex frequencies / A. Maddi [et al.] // J. Appl. Phys. 2025. Vol. 137, iss. 23. P. 234701.
- 8. Metasurface-bounded open cavities supporting virtual absorption: free-space energy accumulation in lossless systems / A. Marini [et al.] // Opt. Lett. 2020. Vol. 45, iss. 11. P. 3147–3150.
- 9. Plasma Ignition via High-Power Virtual Perfect Absorption / T. Delage [et al.] // ACS Photon. 2023. Vol. 10, iss. 10. P. 3781–3788.
- 10. Virtual parity-time symmetry / H. Li [et al.] // Phys. Rev. Lett. 2020. Vol. 124, iss. 19. P. 193901.
- 11. *Kim S.* Complex-frequency excitations in photonics and wave physics / S. Kim, A. Krasnok, A. Alu // Science. 2025. Vol. 387, iss. 6741. P. eado4128.
- 12. *Novitsky D. V.*, *Shalin A. S.* Virtual perfect absorption in resonant media and their PT-symmetric generalizations // Phys. Rev. A. 2023. Vol. 108, iss. 5. P. 053513.
- 13. *Novitsky D. V.* Tunable virtual gain in resonantly absorbing media // Phys. Rev. A. 2023. Vol. 107, iss. 1. P. 013516.