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Abstract: In recent years, multimodal sentiment analysis has attracted increasing attention
from researchers owing to the rapid development of human–computer interactions. Senti-
ment analysis is an important task for understanding dialogues. However, with the increase
of multimodal data, the processing of individual modality features and the methods for
multimodal feature fusion have become more significant for research. Existing methods that
handle the features of each modality separately are not suitable for subsequent multimodal
fusion and often fail to capture sufficient global and local information. Therefore, this study
proposes a novel multimodal sentiment analysis method based on domain generalization
and graph neural networks. The main characteristic of this method is that it considers
the features of each modality as domains. It extracts domain-specific and cross-domain-
invariant features, thereby facilitating cross-domain generalization. Generalized features
are more suitable for multimodal fusion. Graph neural networks were employed to extract
global and local information from the dialogue to capture the emotional changes of the
speakers. Specifically, global representations were captured by modeling cross-modal
interactions at the dialogue level, whereas local information was typically inferred from
temporal information or the emotional changes of the speakers. The method proposed
in this study outperformed existing models on the IEMOCAP, CMU-MOSEI, and MELD
datasets by 0.97%, 1.09% (for seven-class classification), and 0.65% in terms of weighted
F1 score, respectively. This clearly demonstrates that the domain-generalized features
proposed in this study are better suited for subsequent multimodal fusion, and that the
model developed here is more effective at capturing both global and local information.

Keywords: domain generalization; graph neural network; multimodal emotion recognition;
domain invariant features; interdomain invariant features

1. Introduction
Emotions are intrinsic to humans, guiding their behavior and indicating underlying

thought processes; therefore, understanding and recognizing emotions are crucial for
developing artificial intelligence technologies that can interact directly with humans, such
as personal digital assistants. In conversations among individuals, emotions constantly
fluctuate as each person experiences and expresses them. With the rapid advancement
of information technology and the popularity of social media, people generate a vast
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amount of multimodal data in their daily lives, such as text, images, and audio. These
data contain rich emotional information such as the emotions expressed by users in their
posts, comments, pictures, and videos on social media. Consequently, automatic emotion
recognition and understanding have become important research directions in natural
language processing and artificial intelligence.

However, owing to the complexity and heterogeneity of multimodal data, single-
modal emotion recognition methods are no longer sufficient to meet the needs of emotion
analysis in conversations. Therefore, multimodal emotion recognition methods are required
to better understand and analyze the emotional content of dialogues.

Furthermore, analysis of multimodal conversational data has significant applications
in social life. For example, in sentiment analysis, malicious sentiment manipulation on
the Internet can threaten user safety. The online sentiment environment can be effectively
improved by comprehensively analyzing users’ online discussions and taking appropriate
measures. In intelligent customer service, systems can dynamically adjust response strate-
gies based on the emotional content and tone expressed in user speech, thereby enhancing
the user experience. In the medical industry, emotion recognition systems can assist in
diagnosing and treating patients, particularly in communicating with patients with facial
and body movement differences such as those with autism, providing important diagnostic
and therapeutic support.

Mainstream approaches to emotion recognition in dialogue typically utilize global
and local contextual information to predict the emotional labels of each sentence. Global
information can be captured by modeling cross-modal interactions at the dialogue level,
whereas local information is often inferred from temporal information or emotional changes
of speakers. However, the extraction of single-modal features by existing methods is not
conducive to subsequent multimodal fusion, resulting in limitations in emotion recognition
performance. Therefore, this study proposes a novel multimodal emotion recognition
method based on domain generalization and graph neural networks to improve the perfor-
mance and robustness of emotion recognition.

The main contributions of this study are as follows.
(1) We proposed a multimodal sentiment recognition framework called TL-RGCN.

The framework consists of three modules: the feature extraction module, where we use
the RoBERTa model to extract features for the textual modality, the OpenSmile toolkit
to extract features for the audio modality, and the DenseNet convolutional network to
extract facial features for the visual modality. The domain-generalization module treats
each modality as a separate domain and performs domain generalization across different
domains. This involves splitting the features of each modality into two parts: one for
extracting domain-specific invariant features and the other for domain-invariant features.
The graph neural network module utilizes a Relational Graph Convolutional Network
(RGCN) to capture both global and local information, thereby enhancing the performance
of sentiment recognition in dialogs.

(2) We conducted experiments on three datasets: IEMOCAP, CMU-MOSEI and MELD,
achieving improvements of 0.97%, 1.09% (for seven-class classification), and 0.65% in
weighted F1 scores compared to existing models. (3) We performed an ablation study on
the domain generalization and graph neural network modules using the IEMOCAP dataset
to verify the effectiveness of both modules. When the graph neural network module was
removed, the accuracy and weighted F1 score decreased by 3.69% and 3.80%, respectively.
When the domain generalization module was removed, they decreased by 3.01% and
3.19%, respectively.
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Overall, the proposed TL-RGCN framework and experimental results contribute to
advancing the field of multimodal sentiment recognition, particularly in the context of
domain generalization.

The second section of this paper focuses on related research, primarily introducing
the theoretical knowledge and research status of the graph neural network module and
the domain generalization module used in this study. The third section discusses the
methodology, detailing the specific methods employed and the structure of the model.
The fourth section covers the experiments conducted, including comparative experiments,
ablation studies, and error analysis. The fifth section provides the conclusion, summarizing
the methods and contributions proposed in this paper and offering insights into future
research directions.

2. Related Research
This section provides a literature review of the applications of multimodal emotion

recognition and graph neural networks.

2.1. Multimodal Emotion Recognition in Dialogues

The presence of multiple interlocutors, dynamic interactions, and contextual depen-
dencies poses challenges for Emotion Recognition in Conversations (ERC) tasks. First, in a
multi-participant dialogue, the emotional states of individuals can mutually influence and
change each other. Relying solely on independent emotion recognition for each participant
is insufficient and modeling the interactions between participants is necessary. For example,
a person’s emotions can be influenced by the responses of others, triggering a chain reaction.
Capturing these interactive processes among participants is crucial for ERC modeling.

Second, dialogue is a dynamic interaction process, and the emotional states of partici-
pants can continually evolve as the conversations progress. Merely relying on information
from the current utterance is far from sufficient; modeling the contextual information of the
entire dialogue history is required. Implicit emotional attitudes, interaction patterns, and
past utterances can influence current emotional states. The effective modeling of temporal
dependency is also a significant challenge.

Furthermore, dialogues contain rich contextual information, including the partic-
ipants’ identities, relationships, topics, and environments. These contextual factors are
closely related to emotions; however, comprehensive modeling is difficult. In comparison,
most existing research primarily focuses on textual modalities, neglecting other potentially
valuable sources of information, such as speech and visuals. Exploring how to integrate
multimodal information to enhance the modeling of emotional dynamics in dialogue is a
promising direction for future research.

In the ERC task, researchers strive to model the context of conversations and focus
primarily on the textual modality. Notable methods include CMN [1], DialogueGCN [2],
DER-GCN [3], SDT [4], DialogueCRN [5], and DAG-ERC [6].

Multimodal machine learning approaches have gained popularity because of their
ability to address the limitations of unimodal methods in capturing complex real-world
phenomena. The CMN [1] directly concatenates features from different modalities and
utilizes Gated Recurrent Units (GRU) to model contextual information. ICON [7] extracts
multimodal dialogue features and employs hierarchical modeling of emotional influences
using global memory to improve the performance of speech video emotion recognition.
ConGCN [8] models utterances and speakers as nodes in a graph and captures both
contextual and speaker dependencies as edges. However, the ConGCN focuses only on text
and audio features, neglecting other modalities. Additionally, MMGCN [9] is a model based
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on Graph Convolutional Networks (GCN) that effectively captures long-range contextual
information and multimodal interaction information.

Recently, Xue et al. proposed a multimodal sentiment analysis method that combines
self-supervision and multilayer cross-modal attention. It utilizes multilayer cross-modal
attention to enhance flexibility and information exchange between modalities [10]. Han
et al. presented a multimodal sentiment classification method that first fuses image and
text features to obtain multimodal sentiment classification results. The single-modal and
multimodal sentiment classification results are then passed to a fully connected layer, which
adjusts the dynamic weights to obtain the final sentiment classification results [11]. Lian
et al. proposed a novel framework that combines semisupervised learning and multimodal
interactions; however, it currently handles only two modalities, text and audio, leaving
visual information for future work [12]. Shi and Huang introduced MultiEMO, which is an
attention-based multimodal fusion framework that effectively integrates information from
the text, audio, and visual modalities [13]. However, neither model addresses the temporal
aspects of dialogue.

2.2. Graph Neural Networks

In recent years, there has been an increasing interest in representing data as
graphs. However, the complexity of graph data poses challenges for traditional neural
network models.

Traditional vector-based neural network models face several challenges when han-
dling graph data. First, graph data are highly irregular and complex, making it difficult
to represent them using fixed-size vectors. The numbers of nodes and edges in a graph
can vary significantly, making it challenging to input them directly into neural networks.
Second, graph structures contain rich topological information and neighborhood depen-
dencies that are difficult to capture using simple vector encoding. Finally, graph data often
exhibit high dynamics and heterogeneity, making them difficult to describe using a unified
modeling framework.

To better leverage the structural characteristics of graph data, researchers have pro-
posed new deep-learning models such as Graph Neural Networks (GNNs). GNNs employ
convolution and pooling operations defined on graph structures to extract the features of
nodes and edges in a graph and model their complex topological relationships. In addition,
GNNs exhibit good scalability and flexibility, making them applicable to various types of
graphical data.

Compared with traditional neural networks, GNNs demonstrate significant advan-
tages in modeling graph data. First, GNNs can better capture the structural information
of nodes and their neighborhoods in a graph, resulting in richer feature representations.
Second, GNNs can leverage the topological information of a graph to model the complex
interactions between nodes, which is valuable in many practical applications. Additionally,
GNNs have good interpretability, clearly demonstrating the mechanisms of feature extrac-
tion and information propagation, and aiding in a deeper understanding of model behavior.

When faced with complex interdependencies between modalities, GNNs offer a more
effective approach for harnessing the potential of multimodal datasets. The strength of a
GNNs lies in its ability to capture and model interactions within and between modalities.
This flexibility makes these attractive choices for multimodal learning tasks.

Graph Convolutional Networks (GCNs) have experienced rapid development. They
optimized the node features by effectively utilizing the topological structure between nodes,
improving the classification accuracy while having fewer model parameters, making it
easier to train.
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Extensive research has been conducted on utilizing the power of GNNs to model
dialogue. DialogueGCN models dialogue using a directed graph with utterances as nodes
and dependency relationships as edges, integrating them into a GCN architecture [2]. An
MMGCN effectively integrates multimodal information using an undirected graph, captur-
ing long-range context and cross-modal interactions [9]. Lian et al. proposed a GNN-based
ERC architecture that utilized both text and audio modalities [12]. DialogueCRN integrates
multi-turn reasoning modules to extract and integrate emotional features, allowing for a
comprehensive understanding of the dialogue context from a cognitive perspective [5].
AdaIGN proposes an adaptive interactive graph network that utilizes node and edge
selection strategies to balance self-dependency and empathy in conversational emotion
recognition, addressing the shortcomings of existing methods in handling cross-modal
emotion conflicts and contextual dependencies [14]. COGMEN employs a GNN-based
architecture to model complex dependencies, including local and global information in
dialogues [15]. GA2MIF introduces a multimodal fusion approach named Graph and
Attention based Two-stage Multi-source Information Fusion for emotion detection in con-
versation. This proposed method circumvents the problem of taking heterogeneous graphs
as input to the model while eliminating complex redundant connections in the construction
of graphs [16]. GraphMFT proposes a graph network-based multimodal fusion technique
to enhance emotion recognition in conversations, significantly improving the performance
of existing models in multimodal information integration and emotion classification [17].
SDT proposes a self-distillation-based transformer model that significantly enhances multi-
modal emotion recognition performance by capturing intra- and inter-modal interactions in
conversations and dynamically learning modality weights [4]. LLMs proposes a framework
that integrates multiple emotion lexicons with advanced large language models, signifi-
cantly enhancing the understanding of emotions and response generation in automated
psychotherapy [18]. MFB proposes a generalized multimodal fusion method that effectively
integrates Bidirectional Long Short-Term Memory networks (BiLSTM) and Bidirectional
Gated Recurrent Units (BiGRU) layers for complex feature extraction [19]. UniSA proposes
a unified generative framework that successfully integrates multiple subtasks of sentiment
analysis through a task-specific prompt method and novel pre-training tasks, thereby en-
hancing the model’s ability to perceive multimodal sentiment [20]. Chen et al. introduced
M3Net, a multivariate, multifrequency, and multimodal graph neural network, to explore
the relationships between modalities and background [21]. However, it focuses primarily
on intermodality interactions and does not consider the temporal aspects within the graph.

2.3. Domain Generalization

Domain generalization is an important approach in cross-domain sentiment analysis.
Sentiment analysis, as a core task in natural language processing, plays a crucial role
in various practical applications such as public opinion monitoring, customer service,
and product review analysis. However, owing to differences in language expressions
across different domains or scenarios, sentiment analysis models based on a single domain
struggle to maintain good generalization performance in cross-domain settings.

Traditional solutions often involve the fine-tuning and adaptation of models using
a large amount of labeled data. However, this approach has two main problems: (1) For
newly emerging domains, the collection and annotation of a substantial amount of data is
often costly. (2) The models tend to overfit specific domain features, making it challenging
to maintain good generalization capabilities.

Domain generalization techniques provide more efficient and robust solutions for
addressing these issues. The core idea is to train a general sentiment analysis model that can
be generalized to multiple domains using a limited training dataset. This requires the model
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to learn shared sentiment expression features across domains without overfitting specific
patterns in a particular domain. This approach improves the generalization capabilities
of the model by leveraging the data relationships between the source and target domains.
The existing domain generalization methods include data augmentation, domain-invariant
feature learning, and meta-learning [22]. Most existing studies have focused on specific
applications, such as computer vision and reinforcement learning. In this context, we
primarily focus on domain-invariant feature learning methods for multimodal sentiment
recognition tasks.

Domain-invariant feature learning is a popular strategy in domain generalization
aimed at learning representations that remain invariant across different domains, thereby
facilitating cross-domain generalization. For example, Ganin et al. [23] proposed a domain-
adversarial neural network (DANN) using adversarial training, in which they attempted
to confuse the domain classifier to make it unable to distinguish the domain to which the
features belong, thus achieving domain-invariant learning. Similar to the DANN, many
other researchers have proposed various methods to learn domain-invariant features for
DG and have achieved significant success.

The popularity and effectiveness of domain-invariant learning naturally led us to
explore the underlying principles behind this approach: What are the domain-invariant
features in domain-invariant learning, and how can we further improve their performance
in domain generalization? Previous studies by Zhao et al. [24] have shown that cross-
domain feature alignment alone is insufficient to adapt to domains, and have focused
on label functions. However, accessing label functions is not possible in the DG because
the target is unseen. To address this issue, Bui et al. [25] utilized a metadomain-specific
domain invariance.

Traditional sentiment analysis models often perform poorly in new domains because
they struggle to adapt well to the data characteristics of the new domain. Therefore,
designing models that can be generalized across different domains is an important re-
search direction.

We summarized the research questions, shortcomings, performance issues, and poten-
tial improvements of the related literature, as shown in Table 1.

Table 1. Summary of Literature on Multimodal Emotion Recognition and Graph Neural Networks.

Literature Research
Problems/Disadvantages Performance Issues Possible Methodological

Improvements

CMN [1]

Relied solely on independent
emotion recognition,

neglecting inter-participant
emotional influences

Insufficient for capturing
emotional dynamics

Developed models to
capture emotional
interactions among

participants

DialogueGCN [2]
Primarily focused on text,

neglecting multimodal data
integration

Limited in capturing
cross-modal interactions

Integrated audio and visual
features to enhance

performance

DER-GCN [3]
Did not fully consider the

temporal dynamics of
dialogues

Struggled with dynamic
emotional state processing

Introduced temporal
modeling to capture
emotional evolution

SDT [4]
Lacked comprehensive

context modeling over the
entire dialogue history

Insufficient focus on current
utterances, missing historical

context

Incorporated dialogue
history for a more holistic

understanding

DialogueCRN [5]
Insufficient attention to
emotional influences in

multi-turn dialogues

Lacked the ability to
understand complex

emotions

Enhanced multi-turn
reasoning capabilities for

emotion extraction
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Table 1. Cont.

Literature Research
Problems/Disadvantages Performance Issues Possible Methodological

Improvements

DAG-ERC [6] Primarily based on text, not
utilizing other modalities

Missed potential insights
from multimodal data

Explored multimodal
integration to enrich

emotional understanding

ICON [7] Limited use of temporal
dependencies

Limited understanding of
dynamic interactions

Implemented temporal
dependencies in multimodal

feature extraction

ConGCN [8] Focused only on text and
audio, neglecting visual data

Incomplete modality
coverage

Included visual features to
improve emotional

recognition

MMGCN [9]
Limited ability to capture

long-range contextual
information

Struggled with distant
dependencies

Enhanced long-range
context modeling to improve

performance

Xue et al. [10] Did not consider temporal
aspects in sentiment analysis

Static modeling of emotional
states

Introduced temporal
dynamics in sentiment

classification

Han et al. [11] Poor performance in
single-modal fusion

Performance dropped in
complex scenarios

Explored more
comprehensive multimodal

fusion techniques

Lian et al. [12] Used only text and audio,
ignoring visual information

Incomplete emotional
representation

Expanded to include visual
data for a fuller sentiment

analysis

Shi and Huang [13] Did not address temporal
dynamics in dialogues

Integration effectiveness was
lacking

Developed methods to
integrate temporal aspects

AdaIGN [14]

Insufficient in handling
cross-modal emotional
conflicts and contextual

dependencies

Existing methods were
inadequate for emotion

recognition

Improved node and edge
selection strategies to

balance self-dependency and
empathy

COGMEN [15] Inadequate modeling of
complex dependencies

Insufficient integration of
local and global information

Enhanced modeling
capabilities for complex

dependencies in dialogues

GA2MIF [16] Issues with processing
heterogeneous graph inputs

Complex redundant
connections affected

performance

Simplified connections in
graph construction and
optimized information

fusion methods

LLMs [18]
Limited enhancement in

emotion understanding and
response generation

Poor performance in
complex emotional scenarios

Integrated multiple emotion
lexicons with large language

models to enhance
emotional recognition

Chen et al. [21]
Primarily focused on

intermodality interactions,
neglecting temporal aspects

Lacked consideration for
temporal dynamics

Focused on temporal
dynamics within the graph
to improve intermodality

interaction modeling

Ganin et al. [23]
Existing models struggle
with adaptability in new

domains

Overfitting to specific
domain features

Designed models that can
generalize across domains to

improve generalization
capabilities

Zhao et al. [24]
Insufficient cross-domain

feature alignment, making
adaptation difficult

Inaccessibility of label
functions affected model

performance

Explored
meta-domain-specific
invariance methods

Bui et al. [25]
Traditional sentiment

analysis models perform
poorly in new domains

Difficulty adapting to the
data characteristics of new

domains

Designed sentiment analysis
models that can generalize
across different domains
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3. Methods
To make the unimodal features more suitable for subsequent multimodal fusion and

to better capture global and local information during the multimodal feature fusion process,
this paper proposes a novel multimodal emotion recognition method based on domain
generalization and graph neural networks, namely TL-RGCN. Figure 1 illustrates the
model architecture diagram for this paper. Given a dialogue C[u1, u2, . . . , uN ] consisting of
utterances from multiple speakers, let us represent it as sets of speakers S. Each utterance u
is associated with three modalities, including text (t), audio (a), and visual (v), which can
be represented as ut

i , ua
i , uv

i , respectively. Using local and global context representations, the
objective of the emotion recognition task in the dialogue is to predict the label [z1, z2, . . . , zM]

for each utterance from a set of M predefined emotion labels Z.

Figure 1. Model Architecture Diagram.

3.1. Feature Extraction Module

For the text modality, this study utilized the RoBERTa model for pretraining and fine-
tuning to extract text features. For audio modality, the OpenSmile tool was used for feature
extraction. For the video modality, DenseNet was used to extract facial expression features.

RoBERTa is an improved and optimized version of BERT (Bidirectional Encoder
Representations from Transformers) model. It was pretrained on a large-scale dataset with
larger training data and a longer training time, which improved the model’s performance
and generalization ability. The structure of the RoBERTa model is similar to that of BERT,
which consists of multiple transformer blocks. Each block includes a multihead self-
attention mechanism, fully connected layers, and residual connections. The multihead
self-attention mechanism enables context-dependent encoding, whereas the fully connected
layers map the encoded vectors to a new vector space. Specifically, the structure of the
RoBERTa model is represented by Equation (1):

hl = Trans f ormerBlock(hl−1) (1)

The input vector of the RoBERTa model comprises three components: token embed-
ding, position embedding, and segment embedding. Token embedding converts the input
text into corresponding vector representations, position embedding indicates the position
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information of each word in the input text, and segment embedding represents the bound-
ary information of each sentence in the input text. Compared to the BERT model, RoBERTa
is trained on a larger amount of text data, including web pages, forums, books, and news.
This enables the model to capture contextual dependencies in natural languages better,
thereby improving its performance.

OpenSmile is an open-source audio feature extraction toolkit that is used to extract
various audio features from audio signals. The audio features extracted in this study include
spectral, acoustic, and prosodic features. Mel-frequency cepstral coefficients (MFCCs) are
among the most widely used spectral features, and are closely related to the auditory
characteristics of human perception. To extract MFCC features, the raw audio signal must
undergo preprocessing steps, including filtering, denoising, pre-emphasis, framing, and
windowing. Next, the processed data are subjected to a discrete Fourier transform to obtain
the spectrum. The signal spectrum is then processed using Mel filters, and the output of
the Mel filters undergoes a logarithmic operation. Finally, a discrete cosine transform is
applied to the logarithmic energy of the filter outputs to obtain the MFCC features. Acoustic
features are typically used to measure the clarity of sound and are subjectively defined as
evaluation metrics. However, because humans often exhibit phenomena such as choking,
gasping, and trembling when experiencing emotional fluctuations, acoustic features are
commonly used in the field of speech emotion recognition. Common acoustic features
include glottal parameters, frequency and amplitude perturbations (jitter and shimmer,
respectively), format frequencies, and bandwidths. Prosodic features reflect the degree
of variation in speech rhythms such as stress, tempo, and duration. Therefore, prosodic
features are frequently used in speech emotion analysis. Some prosodic features are related
to the fundamental frequency (pitch), such as pitch frequency, mean, and variance, whereas
others are related to energy, such as the short-term average energy, amplitude, and energy
variation rate. Duration-related features also exist, such as short-term zero-crossing rate,
speech rate, and duration.

DenseNet is a deep convolutional neural network (CNN) architecture proposed by
Huang et al. in 2017 [26]. In contrast to traditional convolutional neural networks (CNNs),
DenseNet adds direct connections in a densely connected manner, enabling more compact
feature transfer and reuse within the network. As a densely connected neural network struc-
ture, DenseNet effectively improves the efficiency of feature propagation and parameter
utilization through its unique design, thereby providing an efficient network architecture
for image processing and other tasks. DenseNet was used to obtain the feature vector
representations for the visual modality.

3.2. Domain Generalization Module

To maintain fairness, we divided the extracted features into two parts: one for domain-
specific invariant feature learning and the other for cross-domain feature learning. In
addition, to ensure feature diversity, we proposed a regularization term to maximize the
differences between these two types of features.

Learning domain-specific invariant features: Domain-specific invariant features gener-
ated within each domain and unaffected by other domains primarily capture the intrinsic
semantic information of the data. To obtain domain-specific invariant features, we em-
ployed a simple distillation framework for learning, as shown in Figure 2. Specifically, the
teacher network uses Fourier phase information and class labels as inputs, and outputs the
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Fourier phase information features for classification. The Fourier transform F(x) of single
channel 2D data x is represented by Equation (2):

F(x)(u, v) =
H−1

∑
h=1

W−1

∑
w=0

x(h, w)e
−j2π(

h
H

u+
w
W

v)
(2)

where u and v are the exponents and H and W represent height and width, respectively.
The Fourier transform can be computed efficiently using the FFT algorithm. The phase
components are represented by (3), where R(x) and I(x) denote the real and imaginary parts
of F(x), respectively.

P(x)(u, v) = arctan
[

I(x)(u, v)
R(x)(u, v)

]
(3)

For data with multiple channels, the Fourier transform was computed separately for each
channel to obtain the corresponding phase information.

Figure 2. Teacher–Student Model Diagram.

Although the distillation method introduces additional training costs, it reduces
unnecessary FFT calculations during prediction, ensuring that the entire prediction process
can be performed end-to-end. The objective function of this method is given by Equation (4):

min
θ

f
S ,θc

S

E(x,y)∼PtrLcls

(
Gc

S

(
G f

S(x)
)

, y
)
+ λ1Lmse

(
G f

S(x), G f
T(x̃)

)
(4)

where Lcls represents the cross-entropy loss and Lmse represents the loss of the aforemen-
tioned distillation model.

Learning cross-domain invariant features: We employ the CORAL alignment to
achieve this, as shown in Equation (5).

Lalign =
2

N × (N − 1)

N

∑
i ̸=j

∥∥∥Ci − Cj
∥∥∥2

F
(5)
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To obtain diverse invariant features and reduce the redundancy and repetition between
features, we aim for these two types of invariant features to be as dissimilar as possible. We
achieve this using an additional regularization term.

Lexp(z1, z2) = −d(z1, z2) (6)

Hence, the objective of this method is given as Equation (7):

min
θ f ,θc

E(x,y)∼PtrLcls

(
Gc

(
G f (x)

)
, y
)
+ λ1Lmse

(
z1, G f

T

(
˜
x
))

+ λ2Lalign + λ3Lexp(z1, z2) (7)

In a cross-domain sentiment analysis, the extraction of individual modality features
is crucial. However, these individual modality features may have different distributions
and representations, leading to challenges in the multimodal fusion processes. Therefore,
to better adapt the extracted individual modality features to the subsequent multimodal
fusion modules, we propose a graph neural network module. This module uses a graph
structure to model the relationships between different modalities, enabling the adapta-
tion and fusion of individual modality features. Specifically, we represent the features of
individual modalities as nodes in a graph and utilize graph neural networks to learn the rep-
resentations between nodes, thereby capturing the correlations and semantic information
between modalities. Through this approach, we can better utilize the features of individual
modalities and seamlessly integrate them into subsequent multimodal sentiment-analysis
tasks, thereby improving the performance and generalization ability of the model.

3.3. Graph Neural Network Module

The role of the Graph Neural Network (GNN) module is to extract global and local
context information and fuse the features extracted by the domain generalization module.
Global information is captured by modeling cross-modal interactions at the conversation
level, whereas local information is typically inferred from speaker-level temporal cues or
emotional changes.

First, the domain-specific and cross-domain invariant features extracted by the do-
main generalization module were concatenated and input into the subsequent GNN mod-
ule. Each utterance was treated as a node, and the temporal order of the utterances
was used to construct a directed graph. The graph includes relationships within the
same speaker’s Rintra and relationships between different speakers’ Rinter, as described by
Equations (8) and (9).

Rintra

(
z(S1)

i

)
=

{
z(S1)

i ← z(S1)
i−P . . . z(S1)

i ← z(S1)
i−1 ,

z(S1)
i → z(S1)

i+1 . . . z(S1)
i → z(S1)

i+F

}
(8)

Rinter

(
z(S1)

i

)
=

{
z(S1)

i ← z(S2)
i−P . . . z(S1)

i ← z(S2)
i−1 ,

z(S1)
i → z(S2)

i+1 . . . z(S1)
i → z(S2)

i+F

}
(9)

Next, a Relational Graph Convolutional Network (GCN) module was used. The
RGCN helps accumulate specific transformations of neighboring nodes based on the types
and directions of the edges present in the graph using normalization and aggregation. The
formula for this process is given by Equation (10).

x′i = Θroot • zi + ∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|

Θr • zj (10)
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where Θroot and Θr represent the learned parameters and |Nr(i)| represents the normaliza-
tion constant.

The operation performed on the node feature x′i , x′j(i, j ∈ 1, 2, . . . n) obtained from the
RGCN is shown in Formula (11).

H′i = W1x′i + ∑ αi,jW2x′j (11)

where αi,j = so f tmax

(
(W3x′i)

T(
W4x′j

)
√

d

)
denotes the attention coefficient.

3.4. Multimodal Emotion Classification

Example linear layers were used to predict emotional categories, as shown in
Equations (12)–(16).

Hi = ReLU
(
W4H′i + b1

)
(12)

Pi = so f tmax(W5Hi + b2) (13)

ŷi = argmax(Pi) (14)

ReLU(x) =

x i f x > 0

0 i f x ≤ 0
(15)

so f tmax(x) =
exi

∑i exi
(16)

To facilitate understanding, we have included some pseudocode.
# 1. Feature Extraction
function feature_extraction(text_data, audio_data, video_data):

text_features = extract_text_features_using_RoBERTa(text_data)
audio_features = extract_audio_features_using_OpenSmile(audio_data)
video_features = extract_video_features_using_DenseNet(video_data)
return text_features, audio_features, video_features

# 2. Learning Domain-Invariant Features
function learn_invariant_features(features):

teacher_model = create_teacher_network()
distilled_features = teacher_model(features)
return distilled_features

# 3. Learning Inter-Domain Invariant Features
function learn_inter_domain_features(features):

coral_loss = align_features_using_CORAL(features)
return coral_loss

# 4. Feature Regularization
function apply_regularization(invariant_features1, invariant_features2):

regularization_loss = compute_regularization(invariant_features1, invariant_features2)
return regularization_loss

# 5. Graph Neural Network Module
function graph_neural_network(invariant_features):

create_graph_structure(invariant_features)
rgcn_output = process_graph_using_RGCN()
return rgcn_output

# 6. Multimodal Emotion Classification
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function multimodal_emotion_classification(graph_features):
emotion_scores = predict_emotion_using_linear_layer(graph_features)
return emotion_scores

# Main Program
function main(text_data, audio_data, video_data):

text_features, audio_features, video_features = feature_extraction(text_data, audio_data,
video_data)

domain_invariant_features = learn_invariant_features(text_features + audio_features +
video_features)

inter_domain_features = learn_inter_domain_features(domain_invariant_features)
regularization = apply_regularization(domain_invariant_features, inter_domain_features)
graph_features = graph_neural_network(domain_invariant_features)
emotion_scores = multimodal_emotion_classification(graph_features)

return emotion_scores

# Call Main Program
results = main(text_data, audio_data, video_data)

4. Experiments
This section mainly presents the relevant experiments, including the introduction of

the dataset, evaluation metrics, comparative experiments (comparing with other existing
models), and ablation experiments (validating the effectiveness of each module of the
proposed method).

4.1. Experimental Configuration
4.1.1. Dataset Introduction

The IEMOCAP, CMU-MOSEI, and MELD datasets were used in this study. They are
publicly available multimodal datasets.

IEMOCAP includes two 12 h conversation videos from 10 speakers. Each conversation
is divided into words. There are 7433 utterances and 151 dialogues. The 6-channel dataset
contains six emotion labels assigned to the discourse: happy, sad, neutral, angry, excited,
and depressed. As a simplified version, ambiguous data pairs, such as (happy, excited) and
(happy, frustrated) were merged into a 4-way dataset [27].

CMU-MOSEI is a multimodal emotion-recognition dataset. It contains annotations for
7 emotions, ranging from highly negative (−3) to highly positive (+3), as well as 6 emotional
labels, including happiness, sadness, disgust, fear, surprise, and anger [28].

MELD is a multimodal, multispeaker dialogue dataset with three high-quality modal-
aligned dialogue datasets: 13,708 utterances, 1433 dialogues, and 304 speakers. Specifically,
unlike binary session datasets, such as IEMOCAP, MELD has three or more speakers in a
conversation. Each sentence in the conversation was labeled with seven emotional tags:
anger, disgust, fear, joy, neutrality, sadness, and surprise [29].

4.1.2. Evaluation Indicators

We used weighted F1 scores and accuracy as evaluation metrics. The F1 score is the
harmonic mean of the precision and recall. If either precision or recall decreases, the F1
value decreases, and vice versa, the F1 value increases. The calculation method is shown in
Equation (17).

F1 =
2× P× R

P + R
(17)

The accuracy is the percentage of correct predictions for the test set.
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The weighted F1 score here refers to w-F1 in Tables 1–3, and accuracy is represented
as Acc.

Table 2. Comparison of the Experimental Results on the IEMOCAP Dataset (the first six columns
represent the w-F1 values for each category).

Method Happy Sad Neutral Angry Excited Frustrated Acc (%) w-F1 (%)

bc-LSTM 26.04 73.18 54.93 64.15 65.63 61.39 60.63 59.58
DialogueRNN 33.18 78.80 59.21 65.28 71.86 58.91 63.40 62.75
DialogueGCN 42.75 84.54 63.54 64.19 63.08 66.99 65.25 64.18

MMGCN 45.45 77.53 61.99 66.70 72.04 64.12 64.56 64.71
DialogueCRN 51.59 74.54 62.38 67.25 73.96 59.97 65.31 65.34

COGMEN 50.79 80.73 49.24 48.83 74.53 62.40 65.89 65.58
GA2MIF 44.23 81.05 65.21 67.18 72.69 63.24 66.35 66.98

TL-RGCN 60.76 81.45 61.22 68.12 72.36 65.22 67.90 67.95

Table 3. Comparison of the Experimental Results on the CMU-MOSEI Dataset.

Method
Sentiment Classification Acc (%) Emotion Classification w-F1 (%)

2 Class 7 Class Happy Sad Angry Fear Disgust Surprise

Multilouge-Net 81.88 43.83 66.84 64.34 66.03 86.05 73.91 85.05
TBJE 81.40 42.91 64.97 69.78 69.86 85.15 81.57 84.41

COGMEN 81.95 45.22 69.88 69.91 73.20 86.79 80.83 85.12
TL-RGCN 82.66 46.31 69.35 71.86 75.77 86.90 83.26 85.48

4.2. Comparative Experiment

This study compared models from recent years, and the results showed that the
proposed model has made significant improvements. Tables 2–4 present the specific
comparison results.

Table 4. Comparison of the Experimental Results on the MELD Dataset.

Method Acc (%) w-F1 (%)

UniSAGPT2 48.12 31.26
bc-LSTM 59.54 56.93

DialogueRNN 59.58 57.39
DialogueGCN 59.46 58.1
DialogueCRN 60.38 58.18

GraphMFT 61.3 58.37
UniSABART 62.45 60.78
MM-DFN 62.49 59.46

SDT 62.77 60.11
TL-RGCN 63.18 60.76

In the IEMOCAP dataset, except for the neutral and excited categories, the proposed
model outperformed the baseline model in all other categories. This means that the model
had a higher accuracy and weighted F1 score in identifying emotional categories other
than neutral and excited. The accuracy increased by 1.55%, indicating that the model
made significant improvements in correctly classifying the samples. The weighted F1 score
increased by 0.97%, indicating that the model achieved better results while balancing the
accuracy and recall.

On the CMU-MOSEI dataset, except for the happy category, the model proposed in
this study also outperformed the baseline model in other categories. Whether in binary
classification tasks or seven classification tasks, the accuracy of this model improved by at
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least 0.71% and 1.09%, respectively, compared with other comparison models. This implies
that the model can more accurately classify emotional categories other than happiness,
whether in binary or multiclass situations.

On the MELD dataset, the proposed model improved the accuracy and weighted F1
score by at least 0.41% and 0.65%, respectively, compared with other comparison models.
This indicates that the model improved the accuracy of emotion recognition and achieved
a better overall performance while balancing accuracy and recall. These results further
validate the superiority of the proposed model for multimodal emotion-recognition tasks.

In summary, the proposed model demonstrated better performance than the baseline
model on the IEMOCAP, CMU-MOSEI, and MELD datasets. It not only achieved better
accuracy and weighted F1 scores in categories other than specific emotional categories but
also demonstrated better performance in multimodal emotion recognition tasks.

In addition, we conducted a comparison with similar models DialogueGCN, MMGCN,
and COGMEN, as shown in Table 5. The accuracy and w-F1 values in the table are
comparisons conducted on the IEMOCAP dataset.

Table 5. Comparison with Similar Models.

Method Time Series Domain Generalization Acc (%) w-F1 (%)

DialogueGCN × × 65.25 64.18
MMGCN × × 64.56 64.71
COGMEN × × 65.89 65.58
TL-RGCN

√ √
67.90 67.95

4.3. Ablation Study

In this section, we describe the ablation experiments conducted to verify the effective-
ness of each module.

First, we considered the influence of the modes. Table 6 presents the results obtained
from the different modal combinations of the TL-RGCN model on the IEMOCAP dataset.

Table 6. Performance of the model on the IEMOCAP dataset under different modality settings.

Modality Settings Acc (%) w-F1 (%)

T 65.22 65.26
A 50.31 49.47
V 37.63 36.67

T + A 66.27 66.36
T + V 63.50 63.61
A + V 53.16 52.82

T + A + V 67.90 67.95

For the IEMOCAP dataset, the text modality performed the best in a single modality
setting, whereas the visual modality yielded the lowest results. This may be due to the
presence of noise, such as the camera position and environmental conditions. In the
bimodal setting, combining text and audio modalities achieved the best performance,
whereas combining audio and visual modalities yielded the worst results. The combination
of the three modalities yielded the best results.

Second, the importance of each module was considered. The function of the domain
generalization module is to further process the features obtained by the feature extraction
module, making them better suited for subsequent feature fusion. The RGCN (Graph Con-
volutional Neural Network) module can better fuse the features of the three modalities and
reflect relationships Rintra within the same speaker and Rinter between different speakers.
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Ablation experiments were conducted to verify the effectiveness of this method. The results
are summarized in Table 7.

Table 7. Performance of the model on the IEMOCAP dataset after the ablation of different modules
(↓ represents the percentage point decrease compared to the original model).

Module Acc (%) w-F1 (%)

- −RGCN 64.21 (↓3.69) 64.15 (↓3.80)
- −TL 64.89 (↓3.01) 64.76 (↓3.19)

- −Rintra 65.54 (↓2.36) 65.82 (↓2.13)
- −Rinter 66.04 (↓1.86) 66.34 (↓1.61)

TL-RGCN 67.90 67.95

As presented in Table 7, the RGCN module has the greatest impact on the model. When
it was removed, the performance of the model decreased by 3.80% (w-F1). The Domain
Generalization Module (TL) is also a key part of the model and can have a significant
impact on its performance, resulting in a 3.19% decrease in its w-F1 value. Rintra and Rinter

are both parts of the RGCN module that complement each other and affect the performance
of the model.

4.4. Explainability Analysis

We have conducted attention heatmap analysis (as shown in Figure 3) to gain deeper
insights into how the model processes and fuses modalities.

Figure 3. Confusion matrix for classification of the IEMOCAP dataset.

Through the attention heatmap analysis of the IEMOCAP dataset, we observed the
following points: Firstly, the heatmap exhibits a distinct block structure, indicating strong
attention between certain source sequences and target emotion categories. This structure
aids in understanding how the model identifies specific emotional features. Secondly,
examining the relationships between source sequences and target sequences reveals that
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certain audio or visual features have a strong attention correlation with specific emotion
categories. This suggests that the model effectively integrates information when fusing
different modalities. For instance, when recognizing the “happy” emotion, the model may
focus more on audio features relevant to that emotion. Finally, the attention distribution for
some emotion categories appears more dispersed, indicating that the model may struggle
with recognizing these categories. This observation provides valuable insights for future
model optimization.

Additionally, we conducted a SHAP value visualization on the IEMOCAP dataset,
and the results are shown in Figure 4. As shown in the figure, the audio_tensor and
speaker_tensor have a significant impact on the model, while the text_tensor and vi-
sual_tensor contribute less to the overall performance.

Figure 4. SHAP value visualization on the IEMOCAP dataset.

4.5. Error Analysis

This study presents a confusion matrix for the classification results of the model on the
IEMOCAP dataset, as shown in Figure 5. The confusion matrix provides a comprehensive
performance overview of the model for sentiment classification and allows for a detailed
evaluation of the classification accuracy for each sentiment category.

After conducting predictive analysis on these datasets, we found that our model had
shortcomings in distinguishing similar emotions. For example, it performed poorly in
distinguishing between happiness and excitement, anger, and frustration (Figure 4). This
implies that our model finds it difficult to distinguish between the subtle differences in these
emotions. In addition, we observed that our model incorrectly classified other emotional
labels as neutral. This may be due to the large number of samples in the neutral categories,
which led our model to classify the predicted results as neutral emotions.

However, it should be pointed out that apart from the aforementioned issues,
our model performs almost error-free in predicting emotions of other dissimilar cate-
gories. This indicates that our model performs relatively well at distinguishing between
certain emotions.
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Figure 5. Confusion matrix for classification of the IEMOCAP dataset.

5. Conclusions
This paper proposes a new TL-RGCN model. The key modules included are the

domain generalization and graph neural network modules. The former uses features
extracted from a single modality as the domain for cross-membrane interactions, render-
ing the extracted features more suitable for subsequent multimodal feature fusion. The
latter uses graph neural networks to learn global and local information and capture the
emotions of the interlocutors. On the IEMOCAP, CMU-MOSEI, and MELD datasets, the
model outperformed existing models by 0.97%, 1.09% (for seven categories), and 0.65% in
weighted F1 scores, respectively. This indicates the crucial role of domain generalization
in processing single-modal features, as well as the significance of the graph convolutional
network module in extracting global and local information during multi-modal feature
fusion. Additionally, the ablation experiments demonstrated that both the domain general-
ization module and the graph neural network module are indispensable; their combination
significantly enhances the model’s accuracy in recognizing emotional categories.

The limitations of this study include that our model exhibited some errors in distin-
guishing between similar categories, indicating that it struggles to differentiate the subtle
differences among these emotions. Additionally, we have observed that our model er-
roneously classifies some other emotion labels as neutral. This may be due to the larger
number of samples in the neutral category, which leads our model to be biased toward pre-
dicting neutral emotions. The future work and research directions will focus on addressing
these issues by improving our model and incorporating a new module to capture the subtle
differences among similar categories.
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