ОЦЕНКА ПРОТИВОМИКРОБНОГО ДЕЙСТВИЯ ОРГАНО-МИНЕРАЛЬНЫХ КОМПЛЕКСОВ НА ОСНОВЕ НАНОЧАСТИЦ СЕЛЕНА

Е. Е. Тарасова¹⁾, А. А. Шкель¹⁾, Н. В. Воронцов¹⁾

1) Учреждение образования «Международный государственный экологический институт имени А. Д. Сахарова» Белорусского государственного университета, ул. Долгобродская, 23/1, 220070, г. Минск, Беларусь, mlada2005@mail.ru

В данной статье представлены результаты исследования антибактериальных свойств препаратов наночастиц селена на различных видах грамм-положительных и грамм-отрицательных культур с использованием методов оценки прироста микробной массы по стандарту МакФарланда и оценки жизнеспособности бактериальных организмов с использованием витального красителя резазурина.

Ключевые слова: Органоминеральные комплексы на основе наночастиц, селен, Е. coli, S. aureus, резазурин, прирост микробной массы, антибактериальные свойства, оценка жизнеспособности.

ASSESSMENT OF ANTIMICROBIAL ACTION OF ORGANO-MINERAL COMPLEXES BASED ON SELENIUM NANOPARTICLES

E. E. Tarasova¹⁾, A. A. Shkel¹⁾, N. V. Vorontsov¹⁾

1) International Sakharov Environmental Institute of Belarusian State University, Dolgobrodskaya str., 23/1, 220070, Minsk, Belarus, mlada2005@mail.ru

This article presents the results of the research of antibacterial properties of selenium nanoparticles on different types of gram-positive and gram-negative cultures using the methods of assessing the growth of microbial mass using the McFarland standard and assessing the viability of bacterial organisms using the vital dye resazurin.

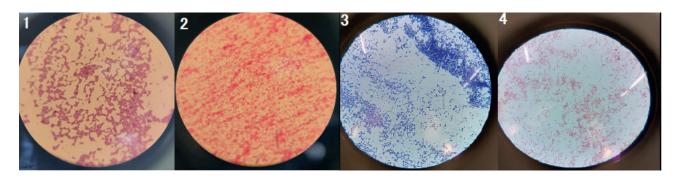
Keywords: Nanoparticle-based organomineral complexes, selenium, E. coli, S. aureus, resazurin, microbial growth, antibacterial properties, viability assessment.

https://doi.org/10.46646/SAKH-2025-1-386-391

Инфекционные патологии, вызванные бактериальными организмами, представляют значительный интерес для современных медицинских и биологических исследований, поскольку, несмотря на развитие науки в этой области, микроорганизмы продолжают наносить значимый социальный и экономический урон обществу. Вызвано это появлением антибиотикорезистентных штаммов микроорганизмов, в особенности, мультирезистентных к терапевтическим средствам организмов. К таковым можно отнести следующие организмы: Mycobacterium tuberculosis, Enterococcus faecium, Enterobacter cloacae, Klebsiella pneumoniae, Staphylococcus aureus, Acinetobacter baumannii и Pseudomonas aeruginosa. В последние годы было разработано множество различных терапевтических технологий против бактериальных инфекций без применения антибиотиков, такие как катионные полимеры, антимикробные пептиды или фотодинамические агенты. Однако, данные методы так же не лишены недостатков, например, катионные полимеры оказывают гемолитическое действие in vivo, а антибактериальные пептиды нестабильны во внутренней среде организма человека. В связи с вышеперечисленным, перспективным видится применение препаратов наночастиц в качестве нетоксичного и стабильного противомикробного средства [1].

Интересным с точки зрения антибактериального действия являются соединения селена. Как незаменимый микроэлемент, он входит в состав селенопротеинов и играет значительную

биологическую роль в жизнедеятельности человека, в частности, селенопротеины принимают участие в репродукции, синтезе ДНК, функционировании щитовидной железы, а также имеют важное значение для антиоксидантной защиты, входя в состав таких ферментов как глутати-онпероксидаза и тиоредоксинредуктаза. Также селен способен взаимодействовать с внутри-клеточными тиолами, что и обуславливает его антибактериальное действие [2].


Долгое время селен применялся как антигрибковое и противомикробное средство в виде соли селенита натрия, однако, такая форма не отличается высокой биодоступностью и стабильностью, а также применение селена в больших количествах (более 400 мкг в сутки) может приводить к формированию токсического эффекта. Все эти недостатки могут быть устранены путем применения в качестве терапевтического средства наноразмерных форм селена [3].

Цель работы: Изучить влияние органо-минеральных комплексов (ОМК) на основе наночастиц селена на разные группы бактериальных микроорганизмов.

Для реализации данной цели были поставлены следующие задачи:

- 1. Культивировать музейные микроорганизмы *E. coli* и *S. aureus*, а также дикие штаммы грам-отрицательных и грам-положительных бактерий, выделенных из носоглотки пациентов, у которых в анамнезе установлено наличие хронического тонзиллита.
 - 2. Оценить влияние ОМК наночастиц селена на прирост микробной массы.
 - 3. Оценить влияние ОМК наночастиц селена на жизнеспособность микроорганизмов.

Материалы и методы. В качестве модельных культур были взяты штаммы $E.\ coli$ BL21 и $S.\ aureus$ K2-1 из коллекции микроорганизмов института микробиологии НАН Беларуси, а также культуры грам-положительных и грам-отрицательных бактерий, полученных из носоглотки человека (рисунок 1).

Puc. 1. Микроскопические фотографии мазков модельных организмов: 1 - S. *aureus*, 2 - E. *coli*, 3 - грам-положительные кокки, 4 - грам-отрицательные палочки

В качестве источника наночастиц селена выступает препарат, предоставленный НТООО "АКТЕХ". Данный препарат содержит в своем составе ОМК наночастиц селена с концентрацией Se=1,17 г/л. Органоминеральный комплекс представляет собой металлополимерный нанокластер, который соединен природным полимером - крахмалом. Крахмалы, являясь природными полимерами, легко усваиваются в клетках микроорганизмов. Нанокластеры имеют средний размер порядка 24 нм. Стабилизированный наноразмерный селен представляет собой жидкость темно-оранжевого цвета.

Для оценки прироста микробной массы осуществляли приготовление взвесей микроорганизмов, стандартизованных в соответствии с методикой МакФарланда. Далее производилась их инкубация при температуре 37 °C с добавлением питательной среды и наночастиц селена (концентрация – 0,1 г/л). Измерение оптической плотности данных растворов производилось при длине волны поглощения 625 нм через 0, 24, 48, 72 и 120 часов инкубации.

Проверка жизнеспособности бактерий осуществлялась при помощи резазурина. Для этого готовились растворы микроорганизмов объемом 500 мкл с добавлением питательной среды

и наночастиц селена. После чего растворы инкубировались при 37 °C в течение 24 часов. Затем в каждый из них добавлялось 150 мкл резазурина и далее они инкубировались при температуре 37 °C в течение двух часов. Оптическая плотность полученных растворов измерялась при длине волны поглощения 570 нм.

Результаты исследования. В таблице 1 представлены численные значения, полученные в результате оценки влияния ОМК наночастиц селена на прирост микробной массы.

Прирост микробной массы

Таблица 1

Проба	E. coli	S. aureus	Грам- положительные кокки	Грам- отрицательные палочки					
0 часов									
1	0,157	0,254	0,219	0,183					
2	0,160	0,261	0,249	0,174					
К	0,136	0,208	0,145	0,098					
24 часа									
1	0,192	0,471	0,473	0,154					
2	0,202	0,444	0,419	0,150					
К	0,125	0,123	0,133	0,085					
48 часов									
1	0,201	0,240	0,820	0,195					
2	0,215	0,204	0,873	0,189					
К	0,640	0,723	0,118	0,099					
72 часа									
1	0,263	0,252	1,100	0,282					
2	0,251	0,231	1,012	0,237					
К	0,784	1,032	0,151	0,093					
120 часов									
1	0,732	0,300	2,104	0,323					
2	0,811	0,396	1,930	0,495					
К	1,454	1,513	0,457	0,114					

Примечание. Растворы: 1, 2 – содержащие наночастицы селена; К – не содержащие наночастицы.

Как видно из полученных результатов, ОМК наночастиц селена в значительной степени подавляет рост микробной массы $E.\ coli$ и $S.\ aureus$, хотя и наблюдается положительное влияния данного препарата на интенсивность размножения этих культур на отметке в 24 часа. Однако, препарат наночастиц селена оказал ярко выраженное положительное влияние на размножение диких культур грам-положительных и грам-отрицательных бактерий. Наиболее ярко выраженный ингибирующий эффект наночастицы селена оказали на прирост микробной массы $S.\ aureus$. Графическое отображение полученных результатов можно наблюдать на рисунке 2.

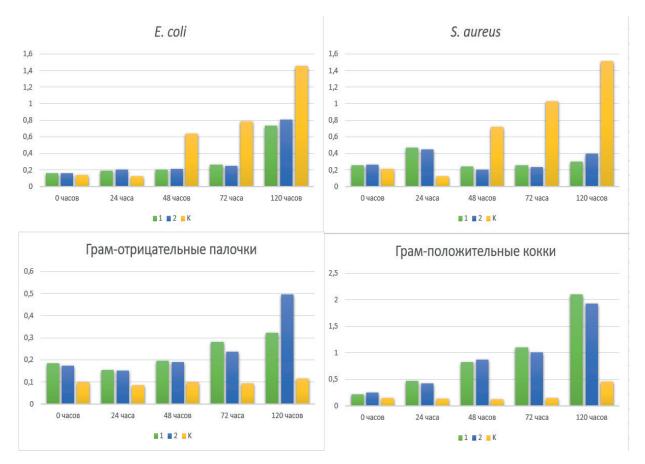
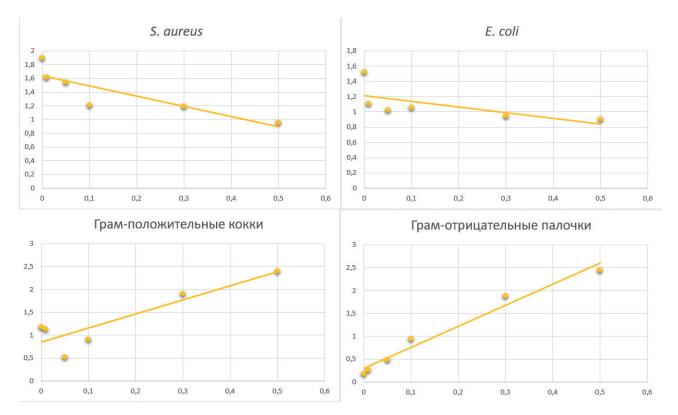


Рис. 2. Гистограммы интенсивности прироста микробной массы для разных видов бактерий

В результате оценки влияния органо-минеральных комплексов на основе наночастиц селена на жизнеспособность бактерий были получены следующие значения:


Таблица 2 Оценка жизнеспособности бактериальных организмов

Проба	Концентрация	S.	E. coli	Грам-положительные	Грам-отрицательные
	(г/л)	aureus	E. COII	кокки	палочки
Контроль	0	1,894	1,525	1,187	0,182
1	0,01	1,612	1,109	1,130	0,261
2	0,05	1,547	1,021	0,520	0,491
3	0,1	1,212	1,061	0,907	0,949
4	0,3	1,189	0,947	1,904	1,880
5	0,5	0,954	0,902	2,395	2,442

Для установления наличия корреляции между изменением концентрации наночастиц селена и жизнеспособностью организмов был применен критерий Спирмена из программного пакета STATISTICA. Были получены следующие значения: для S. aureus – (-0.99); для E. coli – (-0.943); для грам-положительных кокков – 0.486 и для грам-отрицательных палочек – 0.99.

Данный критерий демонстрирует наличие статистически значимой обратной зависимости для исследований со *S. aureus* и *E. coli*, что свидетельствует о наличии негативного влияния наночастиц селена на жизнеспособность данных организмов. Также наблюдается устойчивая прямая зависимость в исследовании с грам-отрицательными палочками, что свидетельствует о положительном влиянии наночастиц селена на жизнеспособность данных организ-

мов. В исследовании с грам-положительными кокками наличие зависимости не установлено (рисунок 3).

Puc. 3. Графики влияния концентрации наночастиц селена на жизнеспособность бактерий По оси абсцисс – концентрация наночастиц селена (Γ/Λ) ; по оси ординат – оптическая плотность

В ходе данного исследования были оценены антибактериальные свойства ОМК на основе наночастиц селена. Препарат продемонстрировал высокую эффективность в ингибировании размножения и жизнедеятельности микроорганизмов $S.\ aureus$ и $E.\ coli$, однако, был неэффективен против диких культур грам-положительных и грам-отрицательных бактерий.

Библиографические ссылки

- 1. Investigation of functional selenium nanoparticles as potent antimicrobial agents against superbugs / X. Huang [et al.] // Acta Biomaterialia. 2016. Vol. 30. P. 397-407.
- 2. Bisht N., Phaswal P., Khanna P. K. Selenium nanoparticles: a review on synthesis and biomedical applications // Mater. Adv. 2022. Vol. 3. P. 1415-1431.
- 3. Investigation of Antifungal and Antibacterial Effects of Fabric Padded with Highly Stable Selenium Nanoparticles / J. Yip [et al.] // Applied Polymer science. 2014. Vol. 131.
- 3. A Comprehensive Review on the Synthesis, Characterization, and Biomedical Application of Platinum Nanoparticles / M Jeyaraj [et al.] // Nanomaterials. 2019. Vol. 9, iss. 12. 1719.
- 4. Phytonanotherapy for management of diabetes using green synthesis nanoparticles / K. Anand [et al.] // J. Photochem. Photobiol. B. 2017. Vol. 173. P. 626-639.
- 5. *Vijayaraghavan K., Ashokkumar T.* Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications // J. Environ. Chem. Eng. 2017. Vol. 5, iss. 5. P. 4866–4883.
- 6. Synthesis of Metallic Nanoparticles Using Plant's Natural Extracts: Synthesis Mechanisms and Applications / D. C. Bouttier-Figueroa [et al.] // Journal of biological and health sciences. 2023. Vol. XXV, iss. 3. P. 125-139.

- 7. Green Synthesis of Metallic Nanoparticles via Biological Entities / M. Shah [et al.] // Materials. 2015. Vol. 8, iss. 11. P. 7278–7308.
- 8. Siddiqi K.S., Husen A. Recent advances in plant-mediated engineered gold nanoparticles and their application in biological system // Journal of Trace Elements in Medicine and Biology. 2017. Vol. 40. P. 10-23.
- 9. The Effect of the Antioxidant Activity of Plant Extracts on the Properties of Gold Nanoparticles / N. Yu. Stozhko [et al.] // Nanomaterials. 2019. Vol. 9, iss. 12. 1655.
- 10. Green Silver Nanoparticles: Plant-Extract-Mediated Synthesis, Optical and Electrochemical Properties / N. Yu. Stozhko [et al.] // Physchem. 2024. Vol. 4, iss. 4. P. 402-419.
- 11. Electrochemical Properties of Phytosynthesized Gold Nanoparticles for Electrosensing / N. Yu. Stozhko [et al.] // Sensors. 2022. Vol. 22, iss. 1. 311.
- 12. Electrochemical Sensor Based on a Carbon Veil Modified by Phytosynthesized Gold Nanoparticles for Determination of Ascorbic Acid/ K. Z. Brainina [et al.] // Sensors. 2020. Vol. 20. 1800.
- 13. A voltammetric sensor based on carbon veil modified with graphene and phytosynthesized cobalt oxide nanoparticles for the determination of food dyes tartrazine (E102) and allura red (E129) / M. A. Buharinova [et al.] // Journal of Analytical Chemistry. 2023. Vol. 78, iss. 12. P. 1679-1687.
- 14. Вольтамперометрическое определение синтетического пищевого красителя синий блестящий FCF / M. A. Бухаринова [и др.] // Аналитика и контроль. 2024. Т. 28, вып. 3. С. 251-258.