АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ И ХИМИЧЕСКИЙ СОСТАВ КЫСТ-АЛЬ-ХИНДИ

Н. В. Богданова¹⁾, **С. А. Барута**¹⁾

1) Учреждение образования «Международный государственный экологический институт имени А. Д. Сахарова» Белорусского государственного университета, ул. Долгобродская, 23/1, 220070, г. Минск, Беларусь, tasha.bo@mail.ru

В работе представлены данные о химическом составе и антибактериальной активности экстрактов из корней кыст-аль-хинди. Основными классами химических соединений, содержащимися в кыст-аль-хинди, являются: фенольные соединения, флавоноиды, терпеноиды, гликозиды и сесквитерпеновые лактоны. Активность была изучена на таких бактериальных штаммах как *Staphylococcus aureus* и *Escherichia coli*. В качестве исследуемых веществ использовались 2 экстракта: гексановый и этанольный с концентрацией 100 мг/мл. Результаты исследования антибактериального действия показали, что грамположительные бактерии более чувствительны к воздействию экстрактов, чем грамотрицательные.

Ключевые слова: кыст-аль-хинди, биологическая активность, сесквитерпеновые лактоны, антибактериальные свойства, хроматография.

ANTIBACTERIAL PROPERTIES AND CHEMICAL COMPOSITION OF SAUSSUREA COSTUS

N. V. Bogdanova¹⁾, S. A. Baruta¹⁾

1) International Sakharov Environmental Institute of Belarusian State University, Dolgobrodskaya str., 23/1, 220070, Minsk, Belarus, tasha.bo@mail.ru

This paper presents data on the chemical composition and antibacterial activity of extracts from *Saussurea Costus* roots. The main classes of chemical compounds contained in *Saussurea Costus* are: phenolic compounds, flavonoids, terpenoids, glycosides and sesquiterpene lactones. The activity was studied on such bacterial strains as *Staphylococcus aureus and Escherichia coli*. Two extracts were used as the studied substances: hexane and ethanol with a concentration of 100 mg/ml. The results of the study of antibacterial action showed that grampositive bacteria are more sensitive to the effects of extracts than gram-negative ones.

Keywords: saussurea costus, biological activity, sesquiterpene lactones, antibacterial properties, chromatography

https://doi.org/10.46646/SAKH-2025-1-299-302

Кыст-аль-хинди обладает разнообразной биологической активностью, в том числе противовоспалительной, противоопухолевой, антиоксидантной и антибактериальной. Для определения состава и оценки антибактериальной активности используются экстракты этого растения. Извлечение активных соединений из порошка корней кыст-аль-хинди происходит с помощью водного, спиртовых, гексанового и хлороформного экстрактов. Корни данного растения содержат широкий спектр фитокомпонентов. Основными классами химических соединений, входящих в состав кыст-аль-хинди являются: фенольные соединения, флавоноиды, терпеноиды, гликозиды и сесквитерпеновые лактоны. Соединения данных классов, которые содержатся в кыст-аль-хинди, а также их свойства представлены в табл.1:

Химический состав кыст-аль-хинди

Класс	Названия соединений	Свойства		
Сесквитерпеновые лактоны	Костунолид	Антибактериальные, противовоспалительные, противоопухолевые		
	Дигидродегидрокостус лактон	Иммуномодулирующие, антибактериальные		
	Цинаропикрин	Антибактериальные, противовоспалительные		
Фенольные соединения	Галловая кислота	Антибактериальные, противовоспалительные		
	Коричная кислота	Антибактериальные		
Флавоноиды	Кверцетин	Антибактериальные, антиоксидантные		
	Катехины	Антиоксидантные, антибактериальные, противоопухолевые		
Терпеноиды	Тимол	Антибактериальные		

Кыст-аль-хинди обладает умеренной или выраженной антибактериальной активностью в отношении грамположительных бактерий, к которым относятся: Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Bacillus subtilis, Bacillus cereus, Streptococcus pneumonia. Для определения антибактериальной активности используются водный, этанольный и гексановый экстракты. Грамположительные бактерии более чувствительны к воздействию этанольного и гексанового экстрактов корней кыст-аль-хинди, так как данные экстракты содержат почти вдвое больше соединений, чем водный экстракт. Например, такие активные вещества как, сесквитерпеновые лактоны, оказывающие наибольшее воздействие на проявление антибактериальных свойств кыст-аль-хинди, растворимы только в органических растворителях и не растворимы в воде [1].

Антибактериальная активность кыст-аль-хинди обусловлена содержанием таких соединений как: сесквитерпеновые лактоны, галловая и коричная кислоты, кверцетин, катехины и тимол.

Сесквитерпеновые лактоны (SLs) оказывают антибактериальное воздействие на такие бактерии как: Staphylococcus aureus, Escherichia coli и Streptococcus pneumoniae. Галловая и коричная кислоты, кверцетин и катехины обладают сильным антибактериальным действием против различных патогенных бактерий, включая Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, Streptococcus mutans. В путь действия этих соединений на бактерии может входить разрушение клеточной мембраны, инактивация важных ферментов, необходимых для роста и размножения бактерий или подавление синтеза бактериальных белков [2].

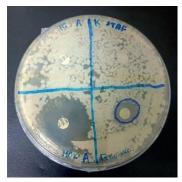
Тимол — это органическое соединение, которое относится к терпеноидам и обладает сильными антибактериальными свойствами против различных грамположительных и грамотрицательных бактерий: стрептококков, стафилококков, включая *Staphylococcus aureus* и *Escherichia coli*. Одним из механизмов действия данного соединения является воздействие на клеточные мембраны бактерий, где тимол может связываться с фосфолипидами, а именно фосфатидилхолином, что приводит к нарушению их целостности и гибели микроорганизмов [2].

Для проверки антибактериальной активности исследуемых экстрактов были отобраны две культуры микроорганизмов: *Staphylococcus aureus u Escherichia coli*. В качестве исследуемых

веществ выступают гексановый и этанольный экстракты из порошка корня кыст-аль-хинди с концентрацией 100 мг/мл. Для контроля использовались диски с антибиотиками, а именно моксифлоксацином и триметоприм/сульфаметоксазолом (ко-тримоксазолом), также контрольный диск без нанесенного на него вещества.

На основании диаметр зон ингибирования роста исследуемых культур бактерий судят об их чувствительности к антибиотикам и исследуемым веществам. Пограничные данные диаметра зон задержки роста микроорганизмов представлены в табл.2:

Таблица 2 Пограничные данные диаметра зон задержки роста и значений для интерпретации результатов испытания чувствительности микроорганизмов


Антибиотики	Диаметры зон (мм)					
Антиоиотики	Устойчивые (R)	Умеренно устойчивые (R/S)	Чувствительные (S)			
Триметоприм/ сульфаметоксазол	≤10	11–15	≥16			
Моксифлоксацин	≤17	18–24	≥25			

Диаметры зон задержки роста исследуемых экстрактов сравнивают с пограничными значениями в таблице 2 и относят их к одной из 3 категорий чувствительности – устойчивости.

Чашки Петри после инкубации в течение 24 часов и полученные результаты представлены на рис. 1, рис. 2, рис.3 и рис.4:

Puc. 1. Чашка Петри со стафилококком и этанольным экстрактом кыст-аль-хинди

Puc. 2. Чашка Петри со стафилококком и гексановым экстрактом кыст-аль-хинди

Puc. 3. Чашка Петри с кишечной палочкой и этанольным экстрактом кыст-аль-хинди

Puc. 4. Чашка Петри с кишечной палочкой и гексановым экстрактом кыст-аль-хинди

Зоны ингибирования, демонстрирующие антибактериальную активность корня кыст-альхинди в отношении *S.Aureus* и *E.Coli*, представлены в табл. 3 и 4:

Антибактериальная активность этанольного экстракта в соответствии с зонами ингибирования

Бактерии	Контроль		Триметоприм / сульфаме- токсазол		Моксифлоксацин		Этанольный экс- тракт	
	Диаметр, мм	R, S	Диаметр, мм	R, S	Диаметр, мм	R, S	Диаметр, мм	R, S
E.Coli	0	R	0	R	40	S	0	R
S.Aureus	0	R	0	R	25	S	20	S

Таблица 4
Антибактериальная активность гексанового экстракта
в соответствии с зонами ингибирования

Бактерии -	Контроль		Триметоприм / сульфаметоксазол		Моксифлоксацин		Гексановый экстракт	
	Диаметр, мм	R, S	Диаметр, мм	R, S	Диаметр, мм	R, S	Диаметр, мм	R, S
E.Coli	0	R	0	R	30	S	10	R/S
S.Aureus	0	R	0	R	29	S	15	S

Результаты показали, что и этанольный, и гексановый экстракты корня кыст-аль-хинди проявляют высокую антибактериальную активность в отношении S.Aureus со средними зонами ингибирования 20 мм и 15 мм, соответственно. Этанольный экстракт кыст-аль-хинди проявлял наибольшую активность в сравнении с гексановым экстрактом. В отношении E.Coli гексановый экстракт проявил умеренную антибактериальную активность с зоной ингибирования 10 мм. В то время E.Coli оказалась резистентной к действию спиртового экстракта. Результаты исследования антибактериального действия этанольного и гексанового экстрактов корней кыст-аль-хинди показали, что грамположительные бактерии более чувствительны к воздействию экстрактов, чем грамотрицательные.

Кыст-Аль-Хинди и его экстракты могут рассматриваться как источники для разработки новых противобактериальных препаратов, а также замены антибиотиков из-за большого содержания разнообразных химических соединений, способных ингибировать и уничтожать размножение как грамположительных, так и грамотрицательных бактерий, в том числе и устойчивых к антибиотикам, а также другие виды микроорганизмов.

Библиографические ссылки

- 1. Ahmed S. G., Coskun S. U. Investigation of antibacterial and antifungal activity of Saussurea costus root extracts // Anais da Academia Brasileira de Ciencias. 2023. Vol. 95, iss. 1. P. 5–22.
- 2. Chemical constituents from the genus *Saussurea* and their biological activities / T. Zhao [et al.] // Heterocycl. Commun. 2017. Vol. 23, iss. 5. P. 331–558.
- 3. Antiviral activity of *Saussurea lappa* ethanol extract against SARS-CoV-2: *in vitro* study / A. A. Fitrianingsih [et al.] // Int J App Pharm. 2024. Vol 16, iss. 2. P. 247–254.