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DEEP  LEARNING-BASED  DETECTION  OF  CARDIAC  HYPERTROPHY   
SYMPTOMS  IN  CT  MEDICAL  IMAGING
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With advancements in bioinformatics and medical imaging, deep learning–based diagnostic methods are 
gaining clinical attention. This study proposes an enhanced YOLO11 model with the Convolutional Block 
Attention Module (CBAM) to improve cardiac hypertrophy detection in chest CT images. By reinforcing 
channel and spatial attention, the method enhances subtle morphological change detection while reducing 
interference from soft-tissue densities, blurred boundaries, and anatomical variability. Tests on a public CT 
dataset show that the improved YOLO11 outperforms the original, achieving 98.19 % precision, 98.79 % 
recall, and 98.47 % mAP@0.5.
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С развитием биоинформатики и медицинской визуализации методы диагностики на основе глубо-
кого обучения привлекают все больше внимания в клинической практике. Это исследование предлагает 
усовершенствованную модель YOLO11 с модулем внимания сверточных блоков (CBAM) для улучше-
ния выявления гипертрофии сердца на КТ-снимках грудной клетки. Усиление канального и простран-
ственного внимания позволяет лучше обнаруживать тонкие морфологические изменения, снижая 
влияние помех, связанных с плотностью мягких тканей, размытыми границами и анатомическими 
вариациями. Тестирование на общедоступном наборе КТ-данных показало, что улучшенная YOLO11 
превосходит оригинальную модель, достигая 98,19 % точности, 98,79 % полноты и 98,47 % mAP@0.5.
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With the rapid evolution of bioinformatics and medical imaging technology, Thoracic CT 
imaging plays a crucial role in diagnosing cardiac hypertrophy, but detection remains challenging due 
to low-contrast heart boundaries, anatomical variability, and imaging artifacts. Traditional methods 
relying on visual inspection and cardiothoracic ratios often lead to diagnostic inaccuracies. Deep 
learning, particularly CNN-based models, has improved medical image analysis by automating 
feature extraction. The YOLO series, especially YOLO11, has gained clinical attention due to its real-
time detection capabilities. However, its Adaptive Attention Module (AAM) struggles with detecting 
subtle morphological changes in the heart [1]. 

YOLO11, released by Ultralytics on September 30, 2024 [1], features high detection accuracy, 
inference speed, and model efficiency, making it well suited for medical image analysis. The model 
employs an improved Cross Stage Partial Network (CSPNet) as its backbone, integrating Feature 
Pyramid Networks (FPN) and Path Aggregation Networks (PAN) for multi-scale feature extraction. 
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Additionally, GhostNet and RepVGG enhance computational efficiency, while self-distillation learning 
improves model generalization. The built-in Adaptive Attention Module (AAM) in YOLO11 enhances 
the detection of small objects and complex backgrounds but remains suboptimal for segmenting 
large anatomical structures such as the heart in chest CT scans. It is susceptible to interference from 
surrounding anatomical features, limiting its ability to accurately capture subtle structural variations. 

Convolutional Block Attention Module (CBAM) is a lightweight attention mechanism that 
improves feature representation by predicting attention weights across channel and spatial dimensions 
and integrating them with the original feature maps [2]. It consists of Channel Attention and Spatial 
Attention, which enhance model performance with minimal parameter overhead. CBAM emphasizes 
key features and suppresses irrelevant details by aggregating channel and spatial information, 
refining intermediate feature maps, and improving attention to salient regions. It is highly adaptable 
and can be seamlessly integrated into various convolutional network architectures. Unlike AAM, 
CBAM improves boundary sensitivity and feature extraction for static cardiac structures [2]. This 
hybrid approach maintains real-time efficiency while significantly improving detection accuracy, 
demonstrating strong potential for clinical application.

CBAM’s channel attention mechanism learns to identify critical feature channels and generates 
a channel attention map, emphasizing important patterns in the input image. First, the input 
feature map undergoes max pooling and average pooling along the spatial dimension, producing 
two complementary spatial context vectors, and  . These vectors are then fed into a shared network 
consisting of a hidden layer and a multilayer perceptron (MLP), which generates the channel attention 
map . To reduce memory consumption, the hidden layer’s activation size is set to , where rrr is the 
reduction ratio [2]. The max-pooled and average-pooled features processed separately by the shared 
network and merged via element-wise summation to obtain the final channel attention vector. The 
calculation method of channel attention is [2]:

( ) ( ) ( )( )1 0 1 0( ) ( ( )) ( ( )) ( ) ( )c c
c avg maxM F MLP AvgPool F MLP MaxPool F W W F W W Fσ σ= + = +

Here, σ denotes the Sigmoid function, and . Note that the MLP weights W0 and W1 are shared, 
and a ReLU activation follows W0 .

CBAM’s spatial attention mechanism captures spatial relationships in feature maps to identify 
key regions, complementing channel attention. Specifically, max pooling and average pooling are 
applied along the channel axis to generate two complementary 2D feature maps, and. These maps are 
then concatenated and passed through a standard convolution layer to produce the final 2D spatial 
attention map , which highlights key regions and suppresses irrelevant features. Spatial attention 
computed as [2]:

( )( ) ( )( )7 7 7 7( ) [ ( ); ( )] [ ; ]s s
s avg maxM F f AvgPool F MaxPool F f F Fσ σ× ×= =

Here f 7×7 represents a 7×7 convolution operation, [⋅ ; ⋅] denotes concatenation along the channel 
dimension, MS is the spatial attention map. σ represents the sigmoid function.

In the improved YOLO11, the CBAM is placed between the neck and the Detect module [1]. The 
attention module is arranged as follows: given an input image, the two attention mechanisms (channel 
and spatial) compute complementary attention, focusing on “what” and “where,” respectively.

The experiments were conducted on a high-performance computing platform. The hardware 
setup included an NVIDIA A100 GPU with 80 GB of memory, an Intel Xeon Platinum series CPU, 
and 256 GB of RAM. The software environment consisted of Ubuntu 20.04 LTS as the operating 
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system, Python 3.9 as the programming language, and PyTorch 1.10.1 with Torchvision 0.11.1 as the 
deep learning framework. CUDA 10.1 was used for GPU acceleration.

The dataset comprised 1,659 chest CT images, which were preprocessed and standardized. They 
were divided into a training set of 1,493 images (90 %) and a test set of 166 images (10 %).

To evaluate the model’s performance in detecting cardiac hypertrophy from chest CT images, 
two experiments were conducted over 100 epochs. The first used the original YOLO11 as a baseline to 
assess detection accuracy without attention mechanisms. The second integrated CBAM into YOLO11 
to enhance feature extraction via channel and spatial attention, testing its impact on detection accuracy, 
sensitivity, and robustness using the same dataset.

The predicted results were classified as follows:

Table 1
Classification of Detection Outcomes

Category Relevant (Positive Class) Non-Relevant (Negative Class)
Retrieved
(Detected)

True Positives
(TP, positive class correctly 

identified)

False Positives
(FP, negative class misclassified as 

positive)
Not Retrieved
(Not Detected)

False Negatives
(FN, positive class 

misclassified as negative)

True Negatives
(TN, negative class correctly 

identified)

In cardiac hypertrophy detection, each bounding box is assigned N+1 confidence scores 
(N object classes + 1 background). A threshold of 0.5 is set, where detections with confidence ≥ 0.5 
are considered positive, otherwise negative.

A higher threshold increases precision but lowers recall, while a lower threshold does the 
opposite, leading to more false positives. This study adopts 0.5 to balance both metrics.

To evaluate the performance of the proposed model in detecting cardiac hypertrophy, we 
conducted comparative experiments using the YOLO11 baseline model and YOLO11 with CBAM. 
The detection results are summarized in Table 2.

Table 2
Performance Comparison Between YOLO11 Baseline and YOLO11 + CBAM

Metric YOLO11 Baseline YOLO11 + CBAM
Precision 96.21 % 98.19 %

Recall 96.97 % 98.79 %
mAP@0.5 97.11 % 98.47 %

mAP@0.95 55.12 % 58.65 %

Precision represents the number of actually positive samples among the predicted samples 
divided by the total number of positive samples. The formula is:

TPPrecision
TP FP

=
+

Recall represents the number of actually positive samples among the predicted samples divided 
by the total number of predicted samples. The formula is: 
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TPRecall
TP FN

=
+

AP (Average Precision) refers to the average precision, indicating the mean accuracy for all 
images of a certain class. By plotting Recall on the x-axis and Precision on the y-axis to form the P-R 
curve, AP is obtained from the area under this curve.

1

0
( )AP p r dr= ∫

mAP (Mean Average Precision), the main evaluation metric for object detection algorithms, is the 
mean of Average Precision across different recall levels. A higher mAP value indicates better detection 
performance on the given dataset. For a test set with N classes, the formula for mAP is:

1

N

k
k

AP
mAP

N
==
∑

The results demonstrate that integrating CBAM into YOLO11 significantly enhances model 
performance across multiple metrics. Precision increased from 96.21% to 98.19%, reducing false 
positives and improving specificity. Recall rose from 96.97% to 98.79%, reflecting better detection 
of cardiac hypertrophy cases. mAP@0.5 improved from 97.11% to 98.47%, ensuring more accurate 
localization of bounding boxes. mAP@0.5 represents the mean Average Precision (mAP) at an 
Intersection over Union (IoU) threshold of 0.5, meaning that for each detection, the model’s predicted 
box and the ground truth box need to have an IoU greater than or equal to 0.5 to be considered 
a correct detection. Meanwhile, mAP@0.95 increased from 55.12% to 58.65%, indicating greater 
robustness across different IoU thresholds. mAP@0.95 represents the mean AP at an IoU threshold 
of 0.95, where the predicted and ground truth boxes need to have an IoU greater than or equal to 
0.95 to be considered a correct detection. This improvement in both mAP@0.5 and mAP@0.95 is 
particularly evident in refining heart structure boundaries. IoU is calculated as the area of intersection 
between the predicted and ground truth boxes divided by the area of their union.

These findings confirm that YOLO11+CBAM outperforms the baseline in classification and 
localization accuracy. CBAM enhances the model’s ability to focus on relevant features, reducing 
background noise and improving feature extraction, which is crucial for detecting cardiac hypertrophy. 
Through rigorous validation, the enhanced model consistently exceeded baseline results across all 
metrics.

This study underscores the importance of attention mechanisms in medical image analysis. By 
emphasizing subtle changes in the cardiac region, CBAM significantly boosts detection accuracy, 
maintaining high performance even under stringent conditions. Ultimately, this research highlights 
deep learning’s potential in bioinformatics and medical imaging, providing valuable insights for 
future applications of attention mechanisms in complex medical data analysis.
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