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With advancements in bioinformatics and medical imaging, deep learning—based diagnostic methods are
gaining clinical attention. This study proposes an enhanced YOLO11 model with the Convolutional Block
Attention Module (CBAM) to improve cardiac hypertrophy detection in chest CT images. By reinforcing
channel and spatial attention, the method enhances subtle morphological change detection while reducing
interference from soft-tissue densities, blurred boundaries, and anatomical variability. Tests on a public CT
dataset show that the improved YOLOI11 outperforms the original, achieving 98.19 % precision, 98.79 %
recall, and 98.47 % mAP@0.5.
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C pa3BuTtreM OMOMH(POPMATUKN M METUIIMHCKON BU3yaIn3allii METObI TMarHOCTUKH HA OCHOBE IITy00-
KOTO 00y4eHHsI TPUBIICKAIOT Bce OOJIbIle BHUMAHHSI B KIIMHUYECKOW MTPAKTUKE. DTO UCCIICJOBAHHE MTPEIaraeT
ycoBepiieHcTBoBaHHY 0 Moziesib YOLO11 ¢ momynem BHUMaHus cBepTOYHBIX O50k0B (CBAM) muist ymyudre-
HUSI BBISIBIICHUS runepTpodun cepana Ha KT-cHUMKax rpyaHOH KIETKH. YCHUIIeHUE KaHAIBHOTO U MPOCTpaH-
CTBCHHOTO BHHMAHHWS ITO3BOJISIET JIydylle OOHAapyKMBaTh TOHKHE MOP(OIOTHUECKHE W3MEHEHUS, CHHKAs
BIIMSIHUE TIOMEX, CBSI3aHHBIX C IUIOTHOCTBIO MSTKHUX TKaHEW, pasMbITHIMH TPaHWIAMH M aHaTOMHYECKUMH
BapuanmsaMu. TectupoBanue Ha obmenoctymHoM Habope KT-mannbix mokasano, uro ymyumeHHas YOLOI11
MIPEBOCXOIUT OPUTHHAILHYIO MOJIeIb, gocturas 98,19 % tounocru, 98,79 % noxrots! 1 98,47 % mAP@0.5.
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With the rapid evolution of bioinformatics and medical imaging technology, Thoracic CT
imaging plays a crucial role in diagnosing cardiac hypertrophy, but detection remains challenging due
to low-contrast heart boundaries, anatomical variability, and imaging artifacts. Traditional methods
relying on visual inspection and cardiothoracic ratios often lead to diagnostic inaccuracies. Deep
learning, particularly CNN-based models, has improved medical image analysis by automating
feature extraction. The YOLO series, especially YOLO11, has gained clinical attention due to its real-
time detection capabilities. However, its Adaptive Attention Module (AAM) struggles with detecting
subtle morphological changes in the heart [1].

YOLOLI1, released by Ultralytics on September 30, 2024 [1], features high detection accuracy,
inference speed, and model efficiency, making it well suited for medical image analysis. The model
employs an improved Cross Stage Partial Network (CSPNet) as its backbone, integrating Feature
Pyramid Networks (FPN) and Path Aggregation Networks (PAN) for multi-scale feature extraction.
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Additionally, GhostNet and RepV GG enhance computational efficiency, while self-distillation learning
improves model generalization. The built-in Adaptive Attention Module (AAM) in YOLO11 enhances
the detection of small objects and complex backgrounds but remains suboptimal for segmenting
large anatomical structures such as the heart in chest CT scans. It is susceptible to interference from
surrounding anatomical features, limiting its ability to accurately capture subtle structural variations.

Convolutional Block Attention Module (CBAM) is a lightweight attention mechanism that
improves feature representation by predicting attention weights across channel and spatial dimensions
and integrating them with the original feature maps [2]. It consists of Channel Attention and Spatial
Attention, which enhance model performance with minimal parameter overhead. CBAM emphasizes
key features and suppresses irrelevant details by aggregating channel and spatial information,
refining intermediate feature maps, and improving attention to salient regions. It is highly adaptable
and can be seamlessly integrated into various convolutional network architectures. Unlike AAM,
CBAM improves boundary sensitivity and feature extraction for static cardiac structures [2]. This
hybrid approach maintains real-time efficiency while significantly improving detection accuracy,
demonstrating strong potential for clinical application.

CBAM'’s channel attention mechanism learns to identify critical feature channels and generates
a channel attention map, emphasizing important patterns in the input image. First, the input
feature map undergoes max pooling and average pooling along the spatial dimension, producing
two complementary spatial context vectors, and . These vectors are then fed into a shared network
consisting of a hidden layer and a multilayer perceptron (MLP), which generates the channel attention
map . To reduce memory consumption, the hidden layer’s activation size is set to , where 777 is the
reduction ratio [2]. The max-pooled and average-pooled features processed separately by the shared
network and merged via element-wise summation to obtain the final channel attention vector. The
calculation method of channel attention is [2]:

M, (F) = o (MLP(AvgPool(F))+ MLP(MaxPool(F))) = a(W1 (W (o) )+ W, (W (F )))

avg max

Here, o denotes the Sigmoid function, and . Note that the MLP weights ¥, and W, are shared,
and a ReLU activation follows W,

CBAM’s spatial attention mechanism captures spatial relationships in feature maps to identify
key regions, complementing channel attention. Specifically, max pooling and average pooling are
applied along the channel axis to generate two complementary 2D feature maps, and. These maps are
then concatenated and passed through a standard convolution layer to produce the final 2D spatial
attention map , which highlights key regions and suppresses irrelevant features. Spatial attention
computed as [2]:

M, (F)=o (™ ([AvgPool(F); MaxPool(F)])) =0'( I ((Fagi F ]))

avg ®~ max

Here /77 represents a 7x7 convolution operation, [- ; -] denotes concatenation along the channel
dimension, M, is the spatial attention map. o represents the sigmoid function.

In the improved YOLO11, the CBAM is placed between the neck and the Detect module [1]. The
attention module is arranged as follows: given an input image, the two attention mechanisms (channel
and spatial) compute complementary attention, focusing on “what” and “where,” respectively.

The experiments were conducted on a high-performance computing platform. The hardware
setup included an NVIDIA A100 GPU with 80 GB of memory, an Intel Xeon Platinum series CPU,
and 256 GB of RAM. The software environment consisted of Ubuntu 20.04 LTS as the operating
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system, Python 3.9 as the programming language, and PyTorch 1.10.1 with Torchvision 0.11.1 as the
deep learning framework. CUDA 10.1 was used for GPU acceleration.

The dataset comprised 1,659 chest CT images, which were preprocessed and standardized. They
were divided into a training set of 1,493 images (90 %) and a test set of 166 images (10 %).

To evaluate the model’s performance in detecting cardiac hypertrophy from chest CT images,
two experiments were conducted over 100 epochs. The first used the original YOLOI11 as a baseline to
assess detection accuracy without attention mechanisms. The second integrated CBAM into YOLO11
to enhance feature extraction via channel and spatial attention, testing its impact on detection accuracy,
sensitivity, and robustness using the same dataset.

The predicted results were classified as follows:

Table 1

Classification of Detection Outcomes

Category Relevant (Positive Class) Non-Relevant (Negative Class)
Retrieved True Positives False Positives
(Detected) (TP, positive class correctly | (FP, negative class misclassified as
identified) positive)
Not Retrieved False Negatives True Negatives
(Not Detected) (FN, positive class (TN, negative class correctly
misclassified as negative) identified)

In cardiac hypertrophy detection, each bounding box is assigned N+1 confidence scores
(N object classes + 1 background). A threshold of 0.5 is set, where detections with confidence > 0.5
are considered positive, otherwise negative.

A higher threshold increases precision but lowers recall, while a lower threshold does the
opposite, leading to more false positives. This study adopts 0.5 to balance both metrics.

To evaluate the performance of the proposed model in detecting cardiac hypertrophy, we
conducted comparative experiments using the YOLO11 baseline model and YOLO11 with CBAM.
The detection results are summarized in Table 2.

Table 2
Performance Comparison Between YOLO11 Baseline and YOLO11 + CBAM

Metric YOLO11 Baseline YOLOI11 + CBAM
Precision 96.21 % 98.19 %
Recall 96.97 % 98.79 %
mAP@0.5 97.11 % 98.47 %
mAP@0.95 55.12 % 58.65 %

Precision represents the number of actually positive samples among the predicted samples
divided by the total number of positive samples. The formula is:

TP

Precision =——
TP+ FP

Recall represents the number of actually positive samples among the predicted samples divided
by the total number of predicted samples. The formula is:
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TP

Recall = ——
TP+ FN

AP (Average Precision) refers to the average precision, indicating the mean accuracy for all
images of a certain class. By plotting Recall on the x-axis and Precision on the y-axis to form the P-R
curve, AP is obtained from the area under this curve.

AP = J: p(r)dr

mAP (Mean Average Precision), the main evaluation metric for object detection algorithms, is the
mean of Average Precision across different recall levels. A higher mAP value indicates better detection
performance on the given dataset. For a test set with N classes, the formula for mAP is:

N
> 4P,

mAP ==
N

The results demonstrate that integrating CBAM into YOLO11 significantly enhances model
performance across multiple metrics. Precision increased from 96.21% to 98.19%, reducing false
positives and improving specificity. Recall rose from 96.97% to 98.79%, reflecting better detection
of cardiac hypertrophy cases. mAP@0.5 improved from 97.11% to 98.47%, ensuring more accurate
localization of bounding boxes. mAP@0.5 represents the mean Average Precision (mAP) at an
Intersection over Union (IoU) threshold of 0.5, meaning that for each detection, the model’s predicted
box and the ground truth box need to have an IoU greater than or equal to 0.5 to be considered
a correct detection. Meanwhile, mAP@0.95 increased from 55.12% to 58.65%, indicating greater
robustness across different loU thresholds. mAP@0.95 represents the mean AP at an IoU threshold
of 0.95, where the predicted and ground truth boxes need to have an IoU greater than or equal to
0.95 to be considered a correct detection. This improvement in both mAP@0.5 and mAP@0.95 is
particularly evident in refining heart structure boundaries. IoU is calculated as the area of intersection
between the predicted and ground truth boxes divided by the area of their union.

These findings confirm that YOLO11+CBAM outperforms the baseline in classification and
localization accuracy. CBAM enhances the model’s ability to focus on relevant features, reducing
background noise and improving feature extraction, which is crucial for detecting cardiac hypertrophy.
Through rigorous validation, the enhanced model consistently exceeded baseline results across all
metrics.

This study underscores the importance of attention mechanisms in medical image analysis. By
emphasizing subtle changes in the cardiac region, CBAM significantly boosts detection accuracy,
maintaining high performance even under stringent conditions. Ultimately, this research highlights
deep learning’s potential in bioinformatics and medical imaging, providing valuable insights for
future applications of attention mechanisms in complex medical data analysis.
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