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МЕХАНИЗМ НИТРИДИЗАЦИИ СЛОЕВ ДИОКСИДА КРЕМНИЯ  
ПРИ ИМПУЛЬСНОЙ ФОТОННОЙ ОБРАБОТКЕ  

В АЗОТНОЙ АТМОСФЕРЕ
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Аннотация. Методом времяпролетной масс-спектроскопии вторичных ионов исследованы профили распре-
деления концентрации связей Si — N в системе Si – SiO2 после нитридизации диоксида кремния путем импульс-
ной фотонной обработки в азотной атмосфере, обеспечивающей нагрев некогерентным потоком излучения от 
кварцевых галогенных ламп, который направлен на нерабочую сторону кремниевой подложки, до температуры 
1150 °С примерно за 7 с. Слои диоксида кремния толщиной 17,7 нм были получены пирогенным окислением 
легированных бором подложек монокристаллического кремния с удельным сопротивлением 12 Ом ⋅ см и ориен-
тацией (100) при температуре 850 °С в течение 40 мин. Установлено, что нитридизация диоксида кремния при им-
пульсной фотонной обработке в азотной атмосфере протекает за счет ускоренной диффузии ионов N−, образую
щихся из-за туннелирования и термоэлектронной эмиссии электронов с поверхности слоя кремния. Нитридизация 
приводит к формированию на поверхности диоксида кремния и границе раздела Si – SiO2 слоя с максимальной 
концентрацией азота путем уменьшения энергии активации образования связей Si — N, обусловленного элек-
тронным возбуждением в кремнии и возможным разрывом связей Si — О, Si — ОН, Si — Si. Уменьшение энергии 



69

Физика конденсированного состояния
Condensed State Physics

активации происходит в результате изменения напряжений, углов и силы связей Si — О из-за фотонно-темпера-
турного воздействия и образования данных связей на поверхности кремния с деформированной кристаллической 
решеткой ввиду ее механической полировки. 

Ключевые слова: кремний; диоксид кремния; импульсная фотонная обработка; нитридизация; масс-спектро
скопия вторичных ионов.
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Abstract. The distribution profiles of Si — N bond concentrations in the Si – SiO2 system were investigated using 
time-of-flight mass spectroscopy of secondary ions after nitridisation of silicon dioxide by pulsed photon treatment in 
a nitrogen ambient, which provides heating by an incoherent radiation flux from quartz halogen lamps directed at the 
non-working side of the silicon substrate to a temperature of 1150 °C in approximately 7 s. Silicon dioxide layers with  
a thickness of 17.7 nm were obtained by pyrolytic oxidation of boron-doped single-crystal silicon substrates with a re
sistivity of 12 Ω ⋅ cm and orientation (100) at a temperature of 850 °C for 40 min. It has been established that sili
con dioxide nitridisation during pulsed photon treatment in a nitrogen ambient proceeds due to accelerated diffusion 
of N− ions formed as a result of tunnelling and thermionic emission of electrons from the surface of the silicon layer. 
Nitridisation leads to the formation of a layer with maximum nitrogen concentration on the surface of silicon dioxide and 
at the Si – SiO2 interface by reducing the activation energy of Si — N bond formation caused by electronic excitation in 
silicon and possible rupture of Si — O, Si — OH and Si — Si bonds. The reducing the activation energy occurs as a result 
of changes in the stresses, angles and strength of Si — O bonds due to photonic and thermal effects and the formation of  
these bonds on the surface of silicon with a deformed crystal lattice due to its mechanical polishing.

Keywords: silicon; silicon dioxide; pulsed photon treatment; nitridisation; mass spectroscopy of secondary ions.

Введение
Нитридизация, или обогащение азотом, слоев диоксида кремния широко применяется в технологии 

производства интегральных схем с комплементарной структурой металл – окисел – полупроводник 
в целях управления скоростью процесса окисления, улучшения однородности толщины окисного слоя, 
повышения его устойчивости при воздействии горячих носителей, а также подавления диффузии бора 
в областях стока – истока р-типа [1–3]. Наиболее распространенными способами нитридизации сло-
ев диоксида кремния являются ионная имплантация азота перед термическим окислением кремния 
и высокотемпературный стационарный отжиг в азотной атмосфере [4]. В обоих случаях отмечается  
локализация азота преимущественно на границе раздела Si – SiO2.

Механизм образования связей Si — N на границе раздела Si – SiO2 предполагает закрепление атомов 
азота на межфазной границе кремния и окисла при достижении поверхности кремниевой подложки 
в результате диффузии, обусловленной возникающим градиентом концентрации азота и наличием на 
данной границе значительных упругих напряжений [5]. Граница раздела является тонким переходным 
слоем нестехиометрического состава SiОх, в котором атомы кремния имеют степени окисления Si+, Si2+

 

и Si3+ и образуют только следующие группировки: поверхностные состояния, дефекты, появившиеся 
вследствие несоответствия периодов решеток, парамагнитные Pb0‑центры (——— Si3Si•) с одной нескомпен-
сированной ковалентной связью атома кремния, а также E′‑центры (•Si ——— O3) [6; 7]. 

Максимальная концентрация Pb0‑центров находится около границы раздела Si – SiO2 со стороны 
кремния, а наибольшая концентрация E′‑центров – со стороны слоя состава SiОх [7]. В соответствии 
с публикациями [8 –10] к их образованию может приводить высвобождение электрона либо захват дырок 
на нейтральный диамагнитный Si — Si-дефект:

——— Si — Si ——— → ——— Si+ •Si ——— + e−,
h+ + ——— Si — Si ——— → ——— Si+ •Si ———.
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В случае нитридизации диоксида кремния за счет взаимодействия азота с деформированными связями 
Si — Si образование связей Si — N наиболее вероятно произойдет при протекании реакции 

2N + ——— Si — Si ——— → 2 ——— Si — N ——.
Согласно работам [8 –10] связи Si — N также появляются при взаимодействии азота с Pb0‑центрами 

в соответствии с реакцией
6N + 2 ——— Si — Si ——— + 2 ——— Si• → 6 ——— Si — N ——. 

В результате названных выше процессов снижается плотность поверхностных состояний на границе 
раздела Si – SiO2 и уменьшаются процессы деградации МОП- и КМОП-изделий, вызванные горячими 
электронами [1].

Авторы исследования [11] при изучении нитридизации слоев диоксида кремния путем их импульсной фо
тонной обработки в азотной среде также установили локализацию азота преимущественно на границе раздела 
Si – SiO2. Механизм нитридизации применительно к данным условиям требует дополнительного изучения.

Настоящая работа посвящена определению механизма нитридизации слоев диоксида кремния в про-
цессе импульсной фотонной обработки в азотной атмосфере.

Методика проведения эксперимента
Исходные подложки монокристаллического кремния марки КДБ12 ориентации (100) диаметром 100 мм 

подвергались пирогенному окислению при температуре 850 °С в течение 40 мин. Толщина полученных 
слоев диоксида кремния составила 17,7 нм. Далее подложки были подвержены импульсной фотонной об-
работке в азотной атмосфере путем нагрева некогерентным потоком излучения от кварцевых галогенных 
ламп, направленным на их нерабочую сторону. Мощность светового потока источника излучения подби-
ралась таким образом, чтобы обеспечить нагрев подложек до температуры 1150 °С примерно за 7 с.

Профили распределения концентрации связей Si — N в системе Si – SiO2 по глубине образцов опреде-
лялись методом времяпролетной масс-спектроскопии системой TOF-SIMS-5 (IONTOF GmbH, Германия). 
Чувствительность метода составляла 5 ⋅ 1015‒1 ⋅ 1016 атомов на 1 см3. Травление образцов осуществлялось 
потоком ионов Cs+ с величиной тока 100 нА, ускоряемых напряжением 2 кВ. Изменения концентрации 
анализируемых элементов определялись в импульсном режиме с временем цикла 50 –100 мкс. Для ана-
лиза использовались первичные ионы Bi+ с энергией 30 кэВ. Расположение границы раздела Si – SiO2 
выявлялось относительно профиля распределения концентрации атомов кремния изотопа 30Si−.

Результаты и их обсуждение
Изучение профилей распределения концентрации связей Si — N в системе Si – SiO2 по глубине слоя 

диэлектрика после его импульсной фотонной обработки в азотной атмосфере показало, что их макси-
мум приходится на границу раздела Si – SiO2 и внешнюю поверхность слоя диоксида кремния (рис. 1). 
Вместе с тем отмечена значительно меньшая их концентрация как в остальном объеме слоя, так и в крем-
нии. Такое распределение концентрации связей Si — N при импульсной фотонной обработке диоксида 
кремния в азотной среде указывает на сходство с механизмом нитридизации при ионной имплантации 
азота перед окислением кремния и стационарной высокотемпературной обработкой в азотной среде [4]. 
Однако формирование подобного распределения концентрации связей за такое короткое время нагрева 
возможно лишь при ускорении диффузии азота в диоксид кремния и при торможении его диффузии из 
межфазного пространства вглубь кремниевой пластины. 

Рис. 1. Профили распределения концентрации Si, SiO2 и SiN по глубине системы Si – SiO2  
до импульсной фотонной обработки в азотной атмосфере (красная линия) и после нее (синяя линия)
Fig. 1. Profiles of the concentration distribution of Si, SiO2 and SiN along the depth of the Si – SiO2 system  

before pulsed photon treatment in a nitrogen atmosphere (red line) and after it (blue line)
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Рассмотрим возможные механизмы протекания описанных выше процессов при импульсной фотонной 
обработке системы Si – SiO2 в азотной атмосфере. Наиболее вероятно, что увеличение скорости диффу-
зии азота в диоксид кремния обусловливается образованием ионов N−, которые из-за малых размеров 
имеют высокий коэффициент диффузии в окисел и низкую энергию активации формирования связей 
с оборванными связями кремния. Низкая энергия активации объясняется тем, что связь Si — N длиннее 
связи Si —  O. Образованию ионов N− способствуют туннелирование и термоэлектронная эмиссия элек
тронов с поверхностных слоев кремния из-за малой толщины окисла. Данным процессам содействуют такие  
факторы, как электронное возбуждение в кремнии, разрыв связей Si — Si и воздействие высоких темпе
ратур, которые сопровождают импульсную фотонную обработку в азотной среде. Эти факторы также 
способствуют уменьшению энергии активации образования связей Si — N, значительно ускоряя его 
завершение как в поверхностных слоях кремниевой подложки, так и в диоксиде кремния.

Снижение энергии активации появления связей Si — N подтверждается непродолжительностью ни
тридизации диоксида кремния и ходом профилей их распределения в системе Si – SiO2. Так, образование 
данных связей при импульсной фотонной обработке в азотной атмосфере, обеспечивающей нагрев до 
температуры 1150 °С примерно за 7 с, протекает в 250 раз быстрее, чем при стационарном отжиге в азоте 
при температуре 1100 °С в течение 30 мин. Сопоставление профилей распределения концентрации дан-
ных связей в системе Si – SiO2 по глубине диоксида кремния после его импульсной фотонной обработки 
в азотной атмосфере (см. рис. 1) и стационарного отжига (рис. 2), описанного нами в работе [4], позволило 
установить следующую особенность их распределения на межфазной границе раздела Si – SiO2 и в самом 
слое окисла. Так, после импульсной фотонной обработки в азотной среде максимальная концентрация 
связей Si — N наблюдается на межфазной границе раздела Si – SiO2 и внешней стороне слоя диоксида 
кремния при их небольшой концентрации в объеме самого слоя. После длительной термической обработ-
ки азот находит энергетически выгодное положение для формирования данных связей только в дефектной 
структуре переходного слоя Si — SiO2, что позволяет ему локализоваться. В первом случае образование 
связи Si — N происходит по всей глубине слоя из-за более низкой энергии активации появления дан-
ной связи по сравнению с энергией активации диффузии азота в диоксид кремния. Во втором случае 
энергия активации диффузии азота в диоксид кремния превышает энергию активации формирования 
связи Si — N как на поверхности слоя, так и в его объеме, что энергетически не способствует ее появле-
нию. Дополнительное влияние на нитридизацию диоксида азота при импульсной фотонной обработке 
в азотной атмосфере также оказывают процессы, связанные с перестройкой структуры диоксида азота, 
а именно с изменением напряжений, углов и силы связей Si —  O. Данные преобразования происходят 
из-за фотонно-температурного воздействия и появления связей Si —  O на поверхности кремния с дефор-
мированной кристаллической решеткой в результате ее механической полировки, что может приводить 
к разрыву связей Si — О и Si — ОН с последующим заполнением их азотом. 

Рис. 2. Профили распределения концентрации Si и N  
по глубине системы Si – SiO2 после стационарной термической обработки

Fig. 2. Profiles of the concentration distribution of Si and N  
along the depth of the Si – SiO2 system after stationary heat treatment

Необходимым условием локализации азота в межфазном пространстве является торможение его 
диффузии из данного слоя в объем кремния, отображенное на рис. 1. Для пояснения данного эффек-
та рассмотрим диффузию азота и формирование его связей с междоузельными атомами кремния на 
границе раздела Si – SiO2 с опорой на зарядовую одномерную модель Ферми. Эти процессы можно 
считать результатом миграции азота ввиду его многочисленных взаимодействий с окружающими ато-
мами и дефектами кремния. Диффузия может протекать как самостоятельно, так и вместе с дефектами 
кристаллической решетки. 
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Для установления того, какой механизм (вакансионный или междоузельный) вносит основной вклад 
в диффузию азота в кремний, проанализируем энергию активации механизмов, необходимых для данно-
го процесса. Высокое значение энергии активации образования комплекса азота с вакансией (4,4 эВ) [4] 
делает его формирование маловероятным. В этой связи основным механизмом диффузии азота в крем-
ний будет являться междоузельный механизм. Он состоит в вытеснении узлового атома азота в междоуз
лие атомами кремния, что обусловливается взаимодействием замещающих атомов примеси с междо-
узельными атомами кремния из-за их высокой подвижности [2; 12]. Данное взаимодействие приводит 
к тому, что атомы замещения, имеющие не такой ковалентный радиус, как у кремния, смещаются междо
узельными атомами кремния из узлов решетки по механизму Воткинса. Иными словами, азот, находя
щийся в узле решетки кремния, из-за разницы их ковалентных радиусов и большей энергии связи меж-
ду ними, чем между кремнием и кремнием [4], смещает узловые атомы кремния к внедренному азоту. 
Возникающие при этом напряжения изменяют параметр решетки, что вызывает вытеснение азота из 
узла решетки и его перевод в междоузельное состояние. 

При дальнейшей диффузии вытесненные атомы азота могут захватываться междоузельными атомами 
кремния и становиться неподвижными. Ближайшей областью с большой концентрацией междоузель-
ных атомов кремния является граница раздела Si – SiO2, что обусловливает диффузию азота в сторону 
границы и локализацию его в этом месте. Данный процесс приводит к снижению концентрации азота, 
диффундирующего в кремний. Глубина механически нарушенного слоя кремния может достигать 100 нм. 
В таком случае в нем будет отмечаться достаточное количество междоузельных атомов кремния, концен-
трация которых уменьшается при смещении от межфазной границы раздела Si – SiO2 вглубь кремния. 
Это означает, что при взаимодействии кремния с азотом, не захваченным на межфазной границе, на 
небольшом расстоянии от межфазной границы будет также происходить образование связей Si — N. 
Поскольку концентрация междоузельных атомов кремния уменьшается с глубиной нарушенного слоя, 
распределение концентрации связей Si — N должно иметь спадающий характер в кремнии. Данная си-
туация отображена на рис. 1.

Следует остановиться на формировании профилей распределения концентрации связей Si — N в си
стеме Si – SiO2 по глубине диоксида кремния при его нитридизации путем предварительного ионного 
легирования кремния азотом и последующего термического окисления (рис. 3). Проведенные нами  
исследования в этом направлении [4] показали, что такой подход позволяет получить профиль распре-
деления концентрации связей Si — N, аналогичный профилю распределения концентрации этих связей 
при импульсной фотонной обработке диоксида кремния в азотной атмосфере. Однако для реализации 
данного подхода требуется применение большего числа технологических операций, чем в случае ни
тридизации диоксида кремния путем импульсной фотонной обработки в азотной среде. Соответственно, 
предложенный подход является более предпочтительным.

Рис. 3. Профили распределения концентрации Si и N по глубине системы Si – SiO2  
при ее нитридизации путем предварительного ионного легирования кремния азотом  

и последующего термического окисления 
Fig. 3. Profiles of the concentration distribution of Si and N along the depth of the Si – SiO2 system  

during its nitridisation by preliminary ion doping of silicon with nitrogen and subsequent thermal oxidation

При создании р-канальных МОП-транзисторов следует учитывать, что формирование отраженных на 
рис. 3 профилей распределения концентрации связей Si — N в системе Si – SiO2 на границах диоксида 
кремния и в нем приводит к необходимости ограничения диффузии бора из затвора в подзатворный 
диэлектрик и р-канал транзистора. Как было показано в работах [3; 13], наличие в диэлектрике атомов 
азота в значительной степени подавляет диффузию бора за счет образования пар азот – междоузельный 
атом кремния, что не позволяет сформировать пару бор – вакансия для реализации парной диффузии, 
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являющейся для бора основным механизмом диффузии. Подавление диффузии бора обеспечивает как 
повышение воспроизводимости порогового напряжения транзисторов данного типа ввиду отсутствия 
проникновения бора в область р-канала и понижения уровня легирования затвора, так и надежность 
затвора из-за отсутствия диффузии бора в подзатворный диэлектрик [3]. 

Заключение
Методом времяпролетной масс-спектроскопии вторичных ионов исследованы профили распреде-

ления концентрации связей Si — N в системе Si – SiO2 после нитридизации диоксида кремния путем 
импульсной фотонной обработки в азотной атмосфере, обеспечивающей нагрев некогерентным потоком 
излучения от кварцевых галогенных ламп, который направлен на нерабочую сторону кремниевой под-
ложки, до температуры 1150 °С примерно за 7 с. Нитридизация слоя диоксида кремния при импульсной 
фотонной обработке в азотной среде протекает за счет ускоренной диффузии ионов N−, образующихся 
из-за туннелирования и термоэлектронной эмиссии электронов с поверхностных слоев кремния. Рас-
сматриваемый процесс приводит к формированию на поверхности диоксида кремния и границе раздела 
Si – SiO2 слоя с максимальной концентрацией азота путем уменьшения энергии активации появления 
связей Si — N, обусловленного электронным возбуждением в кремнии и возможным разрывом связей 
Si — О, Si — ОН, Si — Si. Уменьшение энергии активации происходит в результате изменения напря-
жений, углов и силы связей Si — О из-за фотонно-температурного воздействия и образования данных 
связей на поверхности кремния с деформированной кристаллической решеткой ввиду ее механической 
полировки.
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