БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

метод конечных элементов

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-09 Прикладная математика

Профилизация: Численные методы и алгоритмы решения прикладных задач

Учебная программа составлена на основе ОСВО 6-05-0533-09-2023, учебного плана БГУ: № 6-5.3-57/04 от 15.05.2023.

составитель:

И.В.Никифоров, доцент кафедры вычислительной математики факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕЦЕНЗЕНТ:

М.С.Краков, профессор кафедры ЮНЕСКО «Энергосбережение и возобновляемые источники энергии» факультета технологий управления и гуманитаризации Белорусского национального технического университета, доктор физико-математических наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой вычислительной математики БГУ (протокол № 2 от 23.09.2025)

Научно-методическим советом БГУ (протокол № 2 от 26.09.2025)

Заведующий кафедрой В.И.Репников

B latouela T.B

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — формирование у студентов практических навыков применения компьютерного моделирования нелинейных физических процессов различной природы в областях сложной геометрической формы с использованием метода конечных элементов

Задачи учебной дисциплины:

- 1. основные понятия и задачи, связанные с аппроксимацией функциональных пространств Соболева;
- 2. основные алгоритмы вариационных и проекционных методов, в частности методы Ритца и Галеркина;
- 3. обучение студентов основам программирования на языке Matlab и его использованию для численного моделирования методом конечных элементов.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к дисциплинам профилизации модуля «Численные методы и алгоритмы решения прикладных задач» компонента учреждения образования.

Основой для изучения данной дисциплины являются такие дисциплины как: "Математический анализ", "Дифференциальные уравнения", "Функциональный анализ", "Методы численного анализа", "Программирование". Данный курс связан с дисциплиной "Уравнения математической физики".

Требования к компетенциям

Освоение учебной дисциплины «Метод конечных элементов» должно обеспечить формирование компетенций

Универсальные компетенции:

Решать стандартные задачи профессиональной деятельности на основе применения информационно-коммуникационных технологий.

В результате освоения учебной дисциплины студент должен

знать:

- основные понятия и задачи, связанные с аппроксимацией функциональных пространств Соболева;
- основные алгоритмы вариационных и проекционных методов (Ритца, Галеркина);

уметь:

- строить проекционные (вариационные) постановки начально-краевых задач математической физики для нахождения обобщенных решений;
 - применять для их решения алгоритмы метода конечных элементов;

иметь навык: использования языка программирования Matlab для компьютерного моделирования физических процессов и анализа данных.

Структура учебной дисциплины

Дисциплина изучается в 6 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Метод конечных элементов» отведено для очной формы получения высшего образования — 216 часов, в том числе 72 аудиторных часов, лекции — 36 часов, лабораторные занятия — 30 часов, управляемая самостоятельная работа (УСР) — 6 часов.

Трудоемкость учебной дисциплины 6 зачетных единиц.

Форма промежуточной аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Ортогональные проекции функций в L^2 .

Рассматривается как базовый метод аппроксимации функций на сетке конечных элементов. Находит элемент наилучшего приближения функции относительно нормы ${\bf L}^2$.

Тема 2. Методы Ритца и Галеркина.

Описываются вариационный и проекционный варианты метода конечных элементов. Приводится базовый алгоритм сборки матриц масс и жесткости итоговой системы МКЭ, а также вектора правой части с использованием линейных финитных функций Лагранжа для одномерного стационарного уравнения реакции-диффузии.

Тема 3. Одномерное стационарное уравнение теплопроводности.

Рассматривается решение краевой задачи третьего рода для одномерного уравнения теплопроводности с переменным коэффициентом конечно-элементным методом Ритца.

Тема 4. Одномерное нестационарное уравнение теплопроводности.

Рассматривается решение нестационарной краевой задачи для одномерного уравнения теплопроводности конечно-элементным методом Галеркина. Приводится построение элементных матриц масс и жесткости, элементного вектора нагрузки

Тема 5. Численное интегрирование и одномерные локальные координаты.

Рассматривается построение элементных матриц и элементного вектора правой части в локальных координатах с применением квадратурных формул Гаусса. Приводится алгоритм сборки глобальных матриц.

Тема 6. Уравнения в гильбертовых пространствах.

Рассматривается операторная постановка краевой задачи для эллиптического дифференциального уравнения в гильбертовом пространстве. Вводятся понятия энергетического пространства, проекционной и вариационной формулировок задачи.

Тема 7. Эллиптический дифференциальный оператор 2 порядка.

Для оператора устанавливаются свойства эллиптичности, симметричности и положительной определенности. Доказывается сходимость МКЭ в энергетической норме.

Тема 8. Типы конечных элементов.

Дается формальное определение конечного элемента. Приводится построение функций формы для треугольных линейных и квадратичных

элементов. Рассматривается изопараметрическое отображение на треугольных элементах и численное интегрирование на референтном элементе.

Тема 9. Симплексные координаты.

Рассматриваются локальные симплексные координаты для описания геометрии элементов и построения лагранжевой аппроксимации функций на референтном (стандартном) элементе. Приводится методика построения функций форм различного порядка для одномерных и треугольных элементов.

Тема 10. Треугольные линейные элементы.

Рассматривается изопараметрический треугольный линейный элемент, геометрия которого и функции формы определяются симплексными (площадными) координатами. Приводятся особенности интегрирование в симплексных координатах.

Тема 11. Уравнение переноса в 1D.

Рассматривается решение одномерного уравнения переноса с постоянной скоростью. Используется сетка трехузловых квадратичных элементов. Элементные матрицы масс и конвекции строятся с помощью квадратурных формул. Для аппроксимации производной по времени используется явный метод Эйлера.

Тема 12. Уравнение конвекции-диффузии в 2D.

Рассматривается решение двумерного стационарного уравнения конвекции-диффузии с малым параметром и постоянной скоростью. Используется треугольная сетка трехузловых линейных элементов. Сетка и глобальная матрица жесткости строятся в matlabpdetool.

Тема 13. Стабилизированный метод Галеркина.

Рассматривается решение двумерной задачи обтекания круглого нагретого цилиндра в плоском канале с постоянным полем скорости. Задача описывается уравнением переноса с малым параметром. Для решения применяется стабилизированный метод Галеркина, который подавляет нефизичные осцилляции решения. Сетка и глобальная матрица жесткости строятся в matlabpdetool.

Тема 14. Нестационарное двумерное уравнение теплопроводности.

Рассматривается решение нестационарного двумерного уравнения теплопроводности с переменными коэффициентами. Задача решается методом Галеркина на сетке четырехсторонних квадратичных элементов с 9 узлами. Элементные матрицы вычисляются с использованием квадратурных формул Гаусса.

Тема 15. Уравнение теплопроводности в цилиндрических координатах.

Рассматривается решение сопряженной смешанной краевой задачи для нестационарного уравнения теплопроводности с заданной границей раздела двух фаз. Задача решается в цилиндрических координатах методом Галеркина на сетке треугольных элементов.

Тема 16. Решение нелинейных краевых задач.

Рассматривается применение метода Ньютона при решении задачи Дирихле для нелинейного уравнения Пуассона методом Галеркина на сетке треугольных элементов.

Тема 17. Решение краевой задачи для системы дифференциальных уравнений.

Рассматривается решение двумерной задачи диффузии-реакции методом Галеркина на четырехсторонних9-узловых элементах для системы из двух уравнений.

Тема 18. Численное интегрирование в МКЭ.

Приводится построение квадратурных формул Гаусса для вычисления интегралов на одномерных, треугольных и четырехсторонних элементах.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

			Количество аудиторных часов				OB	
Номер темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	2	3	4	5	6	7	8	9
1	Ортогональные проекции функций в L^2	2					2	Экспресс-
2	Методы Ритца и Галеркина	2			2			Экспресс-
3	Одномерное стационарное уравнение теплопроводности	2			2			Отчет по лаб. работе
4	Одномерное нестационарное уравнение теплопроводности	2			2		2	Экспресс-
5	Численное интегрирование и одномерные локальные координаты	2			2			Контрольная работа
6	Уравнения в гильбертовых пространствах	2			2			Экспресс-
7	Эллиптический дифференциальный оператор 2 порядка	2			2			Отчет по лаб. работе
8	Типы конечных элементов	2			2			Экспресс-
9	Симплексные координаты	2					2	Контрольная работа
10	Треугольные линейные элементы	2			2			Отчет по лаб. работе
11	Уравнение переноса в 1D	2						Отчет по лаб. работе
12	Уравнение конвекции- диффузии в 2D	2			2			Экспресс-
13	Стабилизированный метод Галеркина	2			2			Экспресс-

14	Нестационарное двумерное уравнение теплопроводности	2		2		Отчет по лаб. работе
15	Уравнение теплопроводности в цилиндрических координатах	2		2		Отчет по лаб. работе
16	Решение нелинейных задач	2		2		Экспресс-
17	Решение краевой задачи для системы дифференциальных уравнений	2		2		Экспресс-
18	Численное интегрирование в МКЭ	2		2		Экспресс-

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Журавков, М. А. Современные численные методы в механике [Электронный ресурс] : курс лекций / М. А. Журавков ; БГУ, Механикоматематический фак., Каф. теоретической и прикладной механики. Минск : БГУ, 2022. URL: https://elib.bsu.by/handle/123456789/286556.
- 2. Информационные технологии в проектировании инженерных конструкций : пособие для студ. / И. Л. Ковалева, Д. П. Кункевич, В. В. Напрасников, Ю. В. Полозков. Минск : БНТУ, 2024. 82 с.
- 3. Вербицкая, О. Л. Сопротивление материалов и теория упругости: применение метода конечных элементов при расчете прямоугольных пластин: учебно-методическое пособие для студентов / О. Л. Вербицкая, Л. И. Шевчук. Минск: БНТУ, 2021. 52 с.
- 4. Компьютерное конечно-элементное моделирование : пособие для студентов: в 2 ч. / М-во образования Республики Беларусь, БНТУ, Кафедра "Программное обеспечение информационных систем и технологий". Минск : БНТУ, 2021.

Дополнительная литература

- 1. Finite element and boundary element techniques from mathematical and engineering point of view / Ed. by E.Stein, W.Wendland. Wien; New York: Springer-Verlag, 1988. 333 p.
- 2. Зенкевич, О. Конечные элементы и аппроксимация / О. Зенкевич, К. Морган; пер. с англ. Б. И. Квасова; под ред. Н. С. Бахвалова. Москва: Мир, 1986. 318 с.
- 3. Сильвестер, П. Метод конечных элементов : для радиоинженеров и инженеров-электриков : пер. с англ. Москва : Мир, 1986. 229 с.
- 4. Оден, Дж. Конечные элементы в нелинейной механике сплошных сред: пер. с англ. Москва: Мир, 1976. 464 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Для текущего контроля качества усвоения знаний студентами используется следующий диагностический инструментарий:

- -отчет по лабораторной работе;
- письменная контрольная работа;
- устные экспресс-опросы;

Лабораторные работы, как правило, представляют собой задания, включающие постановку дифференциальной задачи, описывающей заданную физическую систему, а также программную реализацию указанного метода на языке программирования Matlab, проведение вычислительного эксперимента и

комментарии по его итогам. Рекомендуемая форма отчетности по лабораторной работе — письменный отчет. Лабораторная работа оценивается по стандартной 10-балльной шкале. Оценка за лабораторную работу может быть снижена в случае несвоевременного выполнения.

Письменная контрольная работа проводится для контроля знаний по одному или нескольким разделам дисциплины. Они включают 4–5 заданий и оцениваются по 10-балльной шкале. В случае неудовлетворительной оценки контрольная работа может быть переписана.

Устный экспресс-опрос студентов проводится в свободной форме в течение лабораторных и лекционных занятий. Его результаты учитываются преподавателем при выставлении итоговой отметки в конце семестра.

Формой текущей аттестации по дисциплине «Метод конечных элементов» учебным планом предусмотрен зачет.

Примерный перечень заданий для управляемой самостоятельной работы

Tема 1. Oртогональные проекции функций в L^2 (2 4)

Записать алгоритм построения ортогональной проекции L^2 на подпространство непрерывных кусочно-линейных функций для приближения заданной целевой функции. В области решения построить сетку линейных двух узловых элементов в интегрированной программной среде Matlab. Провести сборку матрицы системы и вектора правой части. Найти решение и оценку погрешности в норме L^2 .

Форма контроля – экспресс-опрос.

Тема 4. Одномерное нестационарное уравнение теплопроводности (2 ч)

Записать алгоритм метода Галеркина нахождения решения краевой задачи для одномерного нестационарного уравнения теплопроводности. В области решения построить сетку линейных двух узловых элементов в интегрированной программной среде Matlab. Провести сборку глобальных матриц масс, жесткости и вектора правой части. Построить графики решения для отдельных моментов времени на одном рисунке.

Форма контроля – экспресс-опрос.

Тема 9. Симплексные координаты (2 ч)

Дать определение барицентрических (симплексных) координат L1, L2, L3 для треугольного референтного элемента. Перечислить их основные свойства.

Объяснить геометрический смысл симплексной координаты L1 в треугольном элементе. Какие точки элемента соответствуют значениям L1=0 и L1=1?

Сформулировать преимущества использования референтного элемента в методе конечных элементов (МКЭ). Дать определение лагранжевых конечных элементов. Как располагаются узлы интерполяции для квадратичных (Р2) треугольных элементов?

Для референтного треугольника с вершинами A(0,0), B(1,0), C(0,1):

- а) Записать явные выражения для симплексных координат L1(x,y), L2(x,y), L3(x,y).
 - б) Вычислить значения L1, L2, L3 для точки P(0.2, 0.5).
 - в) Найти координаты точки, для которой L1 = 0.6, L2 = 0.4.

Записать уравнения изопараметрического отображения x(L1,L2,L3), y(L1,L2,L3), которое переводит референтный элемент в физический.

Объяснить, почему использование лагранжевой аппроксимации на симплексных элементах гарантирует сходимость МКЭ при измельчении сетки. Какую роль в этом играет непрерывность базисных функций между элементами?

Форма контроля – контрольная работа.

Примерный перечень лабораторных занятий

- 1. Основные понятия и элементы программирования в MATLAB
- 2. Одномерное стационарное уравнение теплопроводности
- 3. Уравнения в гильбертовых пространствах
- 4. Треугольные линейные элементы
- 5. Численное интегрирование на треугольных элементах
- 6. Уравнение переноса
- 7. Решение одномерных нестационарных задач
- 8. Решение нелинейных задач

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации занятий используется *практико-ориентированный подход*, который предполагает:

- освоение содержания образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности.

Также при организации образовательного процесса используется *метод группового обучения*, который представляет собой форму организации учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

Методические рекомендации по организации самостоятельной работы

Для организации самостоятельной работы студентов по учебной дисциплине «Метод конечных элементов» следует использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (учебно-программные материалы, методические указания к лабораторным занятиям, материалы текущего контроля и текущей аттестации, позволяющие определить соответствие

учебной деятельности обучающихся требованиям образовательных стандартов высшего образования и учебно-программной документации, в т.ч. вопросы для подготовки к зачету и экзамену, список рекомендуемой литературы, информационных ресурсов и др.). Эффективность самостоятельной работы студентов проверяется в ходе текущего и итогового контроля знаний. Для общей оценки качества усвоения студентами учебного материала рекомендуется использование рейтинговой системы.

Примерный перечень вопросов к зачету

- 1. Ортогональные проекции в пространстве L2.
- 2. Эквивалентные формулировки операторной задачи.
- 3. Поэлементная сборка матрицы масс и вектора нагрузки.
- 4. Вариационная формулировка для одномерной краевой задачи
- 5. Вариационная формулировка для двухмерной краевой задачи
- 6. Функциональные пространства
- 7. Линейные операторы и функционалы.
- 8. Симплексные координаты.
- 9. Изопараметрические элементы
- 10. Формула преобразования градиента функции формы из координат референтного элемента в физические координаты
 - 11. Сходимость методов Ритца и Галеркина
 - 12. Проекционная формулировка МКЭ для одномерной краевой задачи.
 - 13. Лагранжева интерполяция на одномерных элементах.
 - 14. Лагранжева интерполяция на треугольных элементах
 - 15. Линейные треугольные элементы.
 - 16. Квадратичные треугольные элементы.
 - 17. Четырехугольные билинейные элементы.
 - 18. Четырехугольные квадратичные элементы
 - 19. Изопараметрические элементы.
 - 20. Решение нелинейных задач
 - 21. Стабилизированный метод Галеркина
 - 22. Квадратурные формулы на треугольных элементах.
 - 23. Квадратурные формулы на четырехугольных элементах
 - 24. Решение нестационарных задач.

протокол согласования учебной программы уо

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную
требуется		учреждения высшего	программу (с
согласование		образования по учебной	указанием даты и
		дисциплине	номера протокола)
Учебная			
дисциплина			
не требует			
согласования			

Заведующий кафедрой вычислительной математики, кандидат физ.-мат. наук, доцент

(подпись)

В.И.Репников

23.09.2025

дополнения и изменения к учебной программе уо

на	/	уче	бнь	ΙЙ	год

№ п/п	Дополнения и измене	кин	Основание
Учебн	ая программа пересмотрена	и одобрена на зас протокол №	седании кафедры _ от 202_ г.)
Заведу	ующий кафедрой		