БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского
Росударственного университета
А.Д.Король
Регистрационный № 3286/6.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Учебная программа учреждения образования по учебной дисциплине для специальностей:

6-05-0533-10 Информатика 6-05-0533-12 Кибербезопасность Учебная программа составлена на основе ОСВО 6-05-0533-10-2023 специальности 6-05-0533-10 «Информатика», учебных планов БГУ: № 6-5.3-58/01, № 6-5.3-58/02, № 6-5.3-58/03, № 6-5.3-58/04, № 6-5.3-58/05 от 15.05 2023; ОСВО 6-05-0533-12-2023 специальности 6-05-0533-12 «Кибербезопасность», учебного плана БГУ № 6-5.3-60/02 от 15.05.2023.

СОСТАВИТЕЛИ:

Н.Я.Радыно, доцент кафедры фундаментальной математики и интеллектуальных систем факультета прикладной математики и информатики Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕЦЕНЗЕНТЫ:

А.К. Деменчук, главный научный сотрудник отдела дифференциальных уравнений, Института математики Национальной Академии Наук Беларуси, доктор физико-математических наук, профессор;

С.Г.Красовский, доцент кафедры дифференциальных уравнений и системного анализа Белорусского государственного университета, кандидат физикоматематических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой фундаментальной математики и интеллектуальных систем БГУ (протокол № 1 от 29.08.2025)

Научно-методическим Советом БГУ (протокол № 2 от 26.09.2025)

Заведующий кафедрой	MBW-	М.М.Васьковский
омогду гогдин кафедрон		IVI.IVI.Dacbrobern

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Дифференциальные уравнения» — создание базы для освоения основных понятий и методов современной математики, используемых при изучении перечисленных выше учебных дисциплин.

Учебная дисциплина знакомит студентов с основными методами интегрирования и исследования дифференциальных уравнений, а также с методами построения дифференциальных моделей детерминированных процессов. При изложении материала учебной дисциплины важно показать возможности использования аппарата дифференциальных уравнений при решении прикладных задач, возникающих в различных областях науки, техники, экономики. Целесообразно выделить моменты построения математических моделей естественных процессов с целью их последующего изучения, а также обратить внимание на алгоритмические аспекты получаемых результатов.

Задачи учебной дисциплины:

- 1. Научить строить и исследовать решения дифференциальных уравнений.
- 2. Научить строить математические модели эволюционных процессов.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к модулю «Дифференциальные уравнения и функциональный анализ» компонента учреждения образования.

Программа составлена с учетом межпредметных связей с учебными дисциплинами. Для специальности 6-05-0533-10 «Информатика» основой для изучения дисциплины являются учебные дисциплины модулей «Математический анализ» и «Геометрия и алгебра» государственного компонента. Для специальности 6-05-0533-12 «Кибербезопасность» основой для изучения дисциплины являются учебные дисциплины модуля «Высшая математика» государственного компонента. Знания, полученные в учебной дисциплине, используются при изучении дисциплины «Теория вероятностей и математическая статистика» компонента учреждения высшего образования.

Требования к компетенциям

Освоение учебной дисциплины «Дифференциальные уравнения» должно обеспечить формирование следующих компетенций:

Для специальности 6-05-0533-10 «Информатика»

Специализированные компетенции:

Использовать методы функционального анализа для решения прикладных задач в различных областях науки, техники, экономики.

Решать уравнения в частных производных и выполнять их исследование в различных приложениях, интерпретировать полученные решения при исследовании естественно-научных процессов, разрабатывать, верифицировать, применять математические модели для исследования сложных систем.

Для специальности 6-05-0533-12 «Кибербезопасность»:

Специализированные компетенции:

Применять методы исследования и решения уравнений в частных производных в различных приложениях, интерпретировать полученные решения при исследовании естественно-научных процессов.

В результате освоения учебной дисциплины студент должен:

знать:

- методы интегрирования элементарных дифференциальных уравнений, линейных уравнений и систем с постоянными коэффициентами;
- условия существования и единственности решений дифференциальных уравнений, основные понятия теории устойчивости;
 - понятие первого интеграла;
 - принципы построения дифференциальных моделей;

уметь:

- находить общее решение и решение задачи Коши для линейного дифференциального уравнения с постоянными коэффициентами методами Лагранжа и Эйлера;
 - интегрировать элементарные дифференциальные уравнения;
- строить дифференциальные модели простейших процессов и физических явлений;

иметь навык:

- владения аппаратом дифференциальных уравнений;
- исследования моделей, описываемых обыкновенными дифференциальными уравнениями.

Структура учебной дисциплины

Дисциплина изучается в 4-м семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Дифференциальные уравнения» отведено для очной формы получения высшего образования — 108 часов, в том числе 68 аудиторных часов: лекции — 34 часа, практические занятия — 34 часа. Из них:

Лекции — 34 часа, практические занятия — 30 часов, управляемая самостоятельная работа — 4 часа.

Трудоёмкость учебной дисциплины составляет 3 зачётные единицы. Форма промежуточной аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Введение

Математические модели детерминированных процессов и явлений в теории обыкновенных дифференциальных уравнений и принципы их построения. Основные понятия и задачи теории обыкновенных дифференциальных уравнений.

Раздел 1. Линейные дифференциальные уравнения с постоянными коэффициентами

Tema 1.1. Однородные линейные дифференциальные уравнения n-го по рядка с постоянными коэффициентами

Структура множества решений и фундаментальная система решений (базис) однородного уравнения. Вронскиан. Общее решение. Алгоритм интегрирования однородных уравнений.

Тема 1.2. Неоднородные линейные дифференциальные уравнения

Общее решение. Метод вариации произвольных постоянных (метод Лагранжа). Уравнения с правой частью в виде квазиполинома. Метод Эйлера интегрирования неоднородных уравнений. Построение линейных дифференциальных моделей физических процессов.

Tema 1.3. Исследование линейных дифференциальных уравнений с постоянными коэффициентами

Устойчивость и асимптотическая устойчивость решений по Ляпунову. Критерий Рауса-Гурвица.

Раздел 2. Линейные дифференциальные системы с постоянными коэффициентами

Тема 2.1. Однородные линейные векторные уравнения размерности п (однородные линейные системы)

Фундаментальная (базисная) матрица решений. Общее решение. Метод Эйлера разрешения однородных систем.

Тема 2.2. Неоднородные линейные векторные уравнения размерности п

Общее решение. Метод сведения линейной системы к одному линейному уравнению. Метод вариации произвольных постоянных (метод Лагранжа). Рассмотрение явлений, описываемых линейными векторными уравнениями.

Тема 2.3. Исследование линейных векторных уравнений размерности и Устойчивость и асимптотическая устойчивость решений по Ляпунову.

Раздел 3. Элементарные дифференциальные уравнения

Тема 3.1. Основные типы элементарных уравнений

Уравнения в полных дифференциалах. Интегрирующий множитель. Уравнения с разделяющимися переменными и сводящиеся к ним. Линейные уравнения первого порядка. Уравнения Бернулли.

Раздел 4. Общая теория дифференциальных уравнений

Тема 4.1. Существование и единственность решения задачи Коши

Задача Коши. Существование и единственность решения задачи Коши для линейных дифференциальных уравнений порядка n и линейных дифференциальных систем размерности n с постоянными коэффициентами. Теорема Пикара. Построение и исследование математических моделей естественнонаучных процессов.

Тема 4.2. Общий метод введения параметра. Первые интегралы

Уравнение Лагранжа, уравнение Клеро. Уравнения высших порядков, допускающих понижение порядка. Уравнение Эйлера.

Интегрируемые комбинации. Базис первых интегралов. Системы в симметрической форме.

Раздел 5. Уравнения с частными производными первого порядка

Тема 5.1. Интегрирование уравнений с частными производными

Линейные уравнения с частными производными первого порядка. Постановка задачи Коши.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

-		Ко.	Количество аудиторных часов				OB	RI	
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Формы контроля знаний	
1	2	3	4	5	6	7	8	9	
	Введение	2							
1	Линейные дифференциальные уравнения с постоянными коэффициентами	10	9				1		
1.1	Однородные линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами.	2	2					Устный опрос. Отчеты по практическим упражнениям с их устной защитой	
1.2	Неоднородные линейные дифференциальные уравнения.	4	4					Устный опрос. Отчеты по практическим упражнениям с их устной защитой	
1.3	Исследование линейных дифференциальных уравнений с постоянными коэффициентами.	4	3				1	Отчеты по практическим упражнениям с их устной защитой Контрольная работа 1.	
2	Линейные дифференциальные системы с постоянными коэффициентами.	10	9				1		

2.1	Однородные линейные векторные уравнения размерности n (однородные линейные системы).	2	2		Устный опрос. Контрольная работа 2
2.2	Неоднородные линейные векторные уравнения размерности n .	4	4		Устный опрос. Отчеты по практическим упражнениям с их устной защитой
2.3	Исследование линейных векторных уравнений размерности n .	4	3	1	Отчеты по практическим упражнениям с их устной защитой Контрольная работа 3
3	Элементарные дифференциальные уравнения	4	4		
3.1	Основные типы элементарных уравнений.	4	4		Устный опрос.
4	Общая теория дифференциальных уравнений	4	4	2	
4.1	Существование и единственность решения задачи Коши.	2	2	2	Устный опрос. Отчеты по практическим упражнениям с их устной защитой
4.2	Общий метод введения параметра. Первые интегралы.	2	2		Отчеты по практическим упражнениям с их устной защитой Контрольная работа 4

5	Уравнения с частными производными первого порядка.	4	4			Отчеты по практическим упражнениям с их устной защитой
5.1	Интегрирование уравнений с частным и производными.	4	4			Собеседование

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Бибиков, Ю. Н. Курс обыкновенных дифференциальных уравнений: учебное пособие / Ю. Н. Бибиков. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 304 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210617.
- 2. Егоров, А. И. Обновленный курс обыкновенных дифференцированных уравнений: учебное пособие для вузов / А. И. Егоров. Изд. 3-е, стер. Санкт-Петербург; Москва; Краснодар: Лань, 2024. 470 с. URL: https://e.lanbook.com/book/359828.
- 3. Жукова, Г. С. Дифференциальные уравнения в примерах и задачах : учебное пособие для студ. высших учебных заведений / Г. С. Жукова. Москва : ИНФРА-М, 2024. 347 с. URL: https://znanium.ru/read?id=441288.
- 4. Филиппов, А. Ф. Сборник задач по дифференциальным уравнениям: [более 140 задач с ответами] / А. Ф. Филиппов. Изд. 9-е. Москва: URSS: ЛЕНАНД, 2022. 239 с.
- **5.** Эльсгольц, Л. Э. Дифференциальные уравнения: учебник для физических и физико-математических факультетов университетов / Л. Э. Эльсгольц. Изд. 9-е. Москва: URSS: ЛЕНАНД, 2021. 309 с.

Дополнительная литература

- 1. Альсевич Л.А., Мазаник С.А., Черенкова Л.П. Практикум по дифференциальным уравнениям. Мн.: БГУ, 2000г. 311 с.
- 2. Альсевич Л.А., Мазаник С.А., Рассолько Г.А., Черенкова Л.П. Диффер енциальные уравнения. Практикум. Мн.: Вышэйшая шк., 2012 г. 382 с.
- 3. Арнольд, В.И. Обыкновенные дифференциальные уравнения: [учебное издание для вузов] / В. И. Арнольд. Изд. 2-е, стер. Москва: МЦНМО, 2018. 343 с.
- 4. Богданов Ю.С., Мазаник С.А., Сыроид Ю.Б. Курс дифференциальных уравнений. Мн.: Універсітэцкае, 1996 г. 287 с.
- 5. Богданов Ю.С., Сыроид Ю.Б. Дифференциальные уравнения. Мн.: Вышэйшая школа, 1983г. -239 с.
- 6. Богданов Ю.С. Лекции по дифференциальным уравнениям. Мн.: Вышэйшая шк., 1977г. 240 с.
- 7. Изобов Н.А. Введение в теорию показателей Ляпунова. Мн.: БГУ, 2006г. 319 с.
- 8. Петровский, И. Г. Лекции по теории обыкновенных дифференциальных уравнений: Учебник для механико-математических фак. ун-тов / И.Г.Петровский. 6-е изд., стер. М.: УРСС, 2003. 272 с.
- 9. Прохорова, Р.А. Обыкновенные дифференциальные уравнения: учеб. пособие для студ. УВО по математическим спец. / Р. А. Прохорова; БГУ. Минск: БГУ, 2017. https://elib.bsu.by/handle/123456789/205697.

- 10. Тихонов, А. Н. Дифференциальные уравнения: учебник для студ. физических спец. и спец. "Прикладная математика" / А. Н. Тихонов, А. Б. Васильева, А. Г. Свешников. Изд. 4-е, стер. Москва: Физматлит, 2002. 254 с.
- 11. Федорюк, М. В. Обыкновенные дифференциальные уравнения: учеб. пособие для студ. высш. технических учеб. заведений / М. В. Федорюк. Изд. стер. Москва: URSS: Либроком, 2017. 447 с.
- 12. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М.:Наука, 1976г. 576 с.
- 13. Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. Мн.: 1974г. 766 с.
- 14. Матвеев Н.М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям. Мн.: Вышэйшая шк., 1974г.
- 15. Пономарев К.К. Составление дифференциальных уравнений. Мн.: Вышэйшая шк., 1973г. 560 с.
- 16. Понтрягин Л.С. Обыкновенные дифференциальные уравнения: М.:Наука, 1982г. -332 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Объектом диагностики компетенций студентов являются знания, умения, полученные ими в результате изучения учебной дисциплины. Выявление учебных достижений студентов осуществляется с помощью мероприятий текущего контроля и промежуточной аттестации.

Для диагностики компетенций в рамках учебной дисциплины рекомендуется использовать следующие формы:

- 1. Устная форма: опросы, собеседование, отчеты по практическим упражнениям с их устной защитой.
 - 2. Письменная форма: контрольные работы.
- В качестве рекомендуемых технических средств диагностики используется обучение, организованное на платформе Moodle (https://edufpmi.bsu.by).

Формой промежуточной аттестации по дисциплине «Дифференциальные уравнения» учебным планом экзамен.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки в ходе проведения контрольных мероприятий текущей аттестации (примерные весовые коэффициенты, определяющие вклад текущей аттестации в отметку при прохождении промежуточной аттестации):

- отчеты по практическим упражнениям с их устной защитой -50 %;
- контрольные работы -50 %.

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (модульно-рейтинговой системы оценки знаний) 40% и экзаменационной отметки 60%.

Примерная тематика практических занятий

Занятие 1. Однородные линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами.

Занятие 2–3. Неоднородные линейные дифференциальные уравнения.

Занятие 4–5. Исследование линейных дифференциальных уравнений с постоянными коэффициентами.

Занятие 6. Однородные линейные векторные уравнения размерности n (однородные линейные системы).

Занятие 7—8. Неоднородные линейные векторные уравнения размерности n.

Занятие 9-10. Исследование линейных векторных уравнений размерности n.

Занятие 11–13. Основные типы элементарных уравнений.

Занятие 14-15. Существование и единственность решения задачи Коши. Общий метод введения параметра. Уравнение Лагранжа, уравнение Клеро.

Занятие 16. Первые интегралы.

Занятие 17. Интегрирование уравнений с частными производными.

Рекомендуемая тематика контрольных работ:

- 1) Контрольная работа №1. Линейные дифференциальные уравнения с постоянными коэффициентами.
- 2) Контрольная работа №2. Однородные линейные векторные уравнения размерности n (однородные линейные системы).
 - 3) Контрольная работа №3. Элементарные дифференциальные уравнения
- 4) Контрольная работа №4. Существование и единственность решения задачи Коши. Уравнения Лагранжа, Клеро. Первые интегралы.

Примерный перечень заданий к контрольным работам

Контрольная работа

- 1. Методом Эйлера найти решение задачи Коши для неоднородного линейного дифференциального уравнения с постоянными коэффициентами пого порядка.
- 2. Методом Лагранжа найти решение неоднородного линейного дифференциального уравнения с постоянными коэффициентами п-ого порядка.
- 3. Применить правило Коши к задаче Коши неоднородного линейного дифференциального уравнения с постоянными коэффициентами n-ого порядка.

Контрольная работа

- 1. Сведением к уравнению второго порядка найти решение системы двух линейных дифференциальных уравнений.
- 2. Найти фундаментальную матрицу линейного дифференциального векторного уравнения, используя метод Эйлера.
- 3. Вычислить экспоненту матрицы и записать решение задачи Коши для линейного дифференциального векторного уравнения, используя правило Коши.
- 4. Методом Лагранжа найти решение линейного дифференциального векторного уравнения.
- 5. Исследовать на устойчивость тривиальное решение линейного дифференциального векторного уравнения.

Контрольная работа

- 1. Решить начальную задачу для уравнения в полных дифференциалах.
- 2. Решить однородное дифференциально уравнение.
- 3. Решить линейное дифференциальное уравнение.
- 4. Решить уравнение Бернулли.
- 5. Решить уравнение, приводящееся к однородному.
- 6. Решить уравнение с разделяющимися переменными.

Контрольная работа

- 1. Решить уравнение Эйлера.
- 2. Редуцировать систему дифференциальных уравнений.
- 3. Методом введения параметра решить данные дифференциальные уравнения.
 - 4. Понизив порядок, решить дифференциальное уравнение.
 - 5. Построить базис первых интегралов системы.
- 6. По первому приближению исследовать устойчивость нулевого решения системы дифференциальных уравнений.
- 7. Исследовать устойчивость нулевого решения системы дифференциальных уравнений вторым методом Ляпунова.

Примерный перечень заданий для управляемой самостоятельной работы

Тема 1.3. Линейные дифференциальные уравнения с постоянными коэффициентами. (1 ч.)

Линейные дифференциальные уравнения с постоянными коэффициентами. Фазовая плоскость однородного стационарного линейного уравнения второго порядка. Решение задач из задачника: Альсевич Л.А., Черенкова Л.П. Практикум по дифференциальным уравнениям. Мн.:, Вышэйшая школа, 1990 г. Отдел V, §11.

Форма контроля - отчет по домашним практическим упражнениям с устной защитой.

Tema 2.3. Исследование линейных векторных уравнений размерности n. (1ч.)

Линейные дифференциальные системы с постоянными коэффициентами. Фазовая плоскость однородного линейного уравнения размерности 2.Решение задач из задачника: Альсевич Л.А., Черенкова Л.П. Практикум по дифференциальным уравнениям. Мн.:, Вышэйшая школа, 1990г.. Отдел VIII, §22.

Форма контроля - отчет по домашним практическим упражнениям с устной защитой.

Tema 4.1. Существование и единственность решения задачи Коши. (2 ч.).

Задача об изогональных траекториях. Уравнение Бесселя. Построение формального решения. Решение задач из задачника: Альсевич Л.А., Черенкова Л.П. Практикум по дифференциальным уравнениям. Мн.:, Вышэйшая школа, 1990г.. Отдел X, §34. Отдел XII, §40.

Форма контроля - отчет по домашним практическим упражнениям с устной защитой.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используются следующие методы:

- метод учебной дискуссии, который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.
- метод группового обучения, который представляет собой форму организации учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

В качестве технических средств для организации работы в рамках учебной дисциплины рекомендуется использовать Образовательный портал БГУ (https://edufpmi.bsu.by) — инструмент с эффективной функциональностью контроля, тренинга и самостоятельной работы.

Используются методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией; понимании информации как отправного, а не конечного пункта критического мышления.

При организации образовательного процесса используется практикоориентированный подход, который предполагает освоение содержания дисциплины через выполнение практических задний, имеющих элементы учебно-исследовательской деятельности.

Методические рекомендации по организации самостоятельной работы

Для организации самостоятельной работы студентов по учебной дисциплине следует использовать современные информационные ресурсы: разместить на образовательном портале комплекс учебных и учебнометодических материалов (учебно-программные материалы, учебное издание теоретического изучения дисциплины, методические указания практическим занятиям, материалы текущего контроля и текущей аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательного стандарта высшего образования и учебнопрограммной документации, в т.ч. вопросы для подготовки к экзамену, задания, тесты, вопросы для самоконтроля, список рекомендуемой литературы, информационных ресурсов и др.).

Примерный перечень вопросов к экзамену

- 1. Линейное дифференциальное уравнение с постоянными коэффициентами первого порядка.
- 2. Общее решение линейного дифференциального уравнения с постоянными коэффициентами первого порядка.
- 3. Теорема о разрешимости линейного дифференциальное уравнение с постоянными коэффициентами первого порядка.
- 4. Модели явлений, в основе которых лежит линейное дифференциальное уравнение с постоянными коэффициентами первого порядка.
- 5. Формула Остроградского-Лиувилля для однородного линейного дифференциального уравнения с постоянными коэффициентами n-ого порядка.
- 6. Линейная зависимость решений однородного линейного дифференциального уравнения с постоянными коэффициентами n-ого порядка.
- 7. Базис пространства решений однородного линейного дифференциального уравнения с постоянными коэффициентами п-ого порядка. Теорема об общем решении.
- 8. Правило Лагранжа поиска частного решения неоднородного линейного дифференциального уравнения с постоянными коэффициентами п-ого порядка..
- 9. Правило Эйлера построения частного решения неоднородного линейного дифференциального уравнения с постоянными коэффициентами пого порядка..
- 10. Теорема о разрешимости для неоднородного линейного дифференциального уравнения с постоянными коэффициентами п-ого порядка.
- 11. Правило Коши разрешения неоднородного линейного дифференциального уравнения с постоянными коэффициентами п-ого порядка.

- 12. Критерий устойчивости по Ляпунову тривиального решения однородного линейного дифференциального уравнения с постоянными коэффициентами n-ого порядка.
- 13. Критерий асимптотической устойчивости тривиального решения однородного линейного дифференциального уравнения с постоянными коэффициентами n-ого порядка.
 - 14. Теорема о разрешимости для СтЛВУ с диагональной матрицей.
 - 15. Теорема о разрешимости для СтЛВУ с треугольной матрицей.
 - 16. Теорема о разрешимости для произвольного СтЛВУ.
 - 17. Формула Остроградского-Лиувилля для однородного СтЛВУ.
- 18. Правило Эйлера построения базисной матрицы, случай различных собственных значений.
- 19.Формула Эйлера-Ляпунова для построения базисной матрицы однородного СтЛВУ.
 - 20. Правило Лагранжа поиска частного решения неоднородного СтЛВУ.
- 21. Экспоненциальное представление решения неоднородного СтЛВУ. Формула Коши.
 - 22. Вычисление экспоненты матрицы.
 - 23. Критерий устойчивости по Ляпунову тривиального решения СтЛВУ.
- 24. Критерий асимптотической устойчивости тривиального решения СтЛВУ.
 - 25.УПД.
 - 26.Интегрирующий множитель.
- 27. Правило отыскания интегрирующего множителя, зависящего от х или от у.
 - 28. Уравнения с разделяющимися переменными.
 - 29.Однородное уравнение.
 - 30. Линейное уравнение.
 - 31. Уравнение Бернулли.
 - 32. Уравнение Риккати.
 - 33.Элементарные уравнения
 - 34.Интегральный критерий.
 - 35. Теорема Пикара-Линделефа
 - 36. Лемма об условии Липшица.
 - 37.Приближения Пикара
- 38. Теорема о разрешимости для уравнения F(x,y,y')=0, неразрешённого относительно производной.
 - 39.Общий метод введения параметра.
 - 40. Уравнения Лагранжа и Клеро.
- 41. Уравнения высших порядков, допускающие понижение порядка (Зосновных случая).
- 42. Теорема о разрешимости для линейного дифференциального уравнения с переменными коэффициентами.
 - 43. Уравнение Эйлера.

- 44. Структура решения однородного уравнения Эйлера.
- 45. Представление решения неоднородного уравнений Эйлера.
- 46. Критерий первого интеграла.
- 47. Интегрируемая комбинация.
- 48. Теорема об общем виде первого интеграла.
- 49. Теорема о базисе первых интегралов.
- 50.Понижение размерности системы (редукция системы).
- 51. Системы в симметричной форме. Примеры
- 52.Об общем решении линейного однородного уравнения с частными производными первого порядка.
- 53.3адача Коши для линейного однородного уравнения с частными производными первого порядка.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Методы оптимизации	Кафедра методов оптимального управления	Предложения отсутствуют	Рекомендовать к утверждению учебную программу (протокол № 1 от 29.08.2025)
Функциональный анализ	Кафедра компьютерных технологий и систем	Предложения отсутствуют	Рекомендовать к утверждению учебную программу (протокол № 1 от 29.08.2025)

Заведующий кафедрой методов оптимального управления кандидат физико-математических наук, доцент

Н.М.Дмитрук

29.08.2025

Заведующий кафедрой компьютерных технологий и систем доктор педагогических наук, кандидат физико-математических наук, профессор

В.В.Казачёнок

29.08.2025

дополнения и изменения к учебной программе уо

на	/	уче	бнь	ΙЙ	год

		y 10011bi	птод	
№ п/п	Дополнения и из	вменения	Осно	зание
Учебна	ая программа пересмотре	на и одобрена на	заседании кафед от	цры 202 г.)
		(протокол м ₂ _	01	_ 202_1.)
Заведу	ющий кафедрой			
	РЖДАЮ факультета			
декан	<u> — — — — — — — — — — — — — — — — — — —</u>			