P06 +

Учреждение образования

«Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А. Д. Сахарова БГУ

О. И. Родькин

25 W March 2025

Регистрационный № УД-<u>1434-25</u>/уч.

ФИЗИКА

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0611-01 Информационные системы и технологии

Профилизации:

Информационные системы и технологии в экологии; Информационные системы и технологии в здравоохранении Учебная программа составлена на основе образовательного стандарта ОСВО 6-05-0611-01-2023 от 10.08.2023, примерной учебной программы по учебной дисциплине «Физика» (рег.№6-05-06-028/пр. от 06.12.2023), учебных планов учреждения образования «Международный государственный экологический институт им. А,Д. Сахарова» Белорусского государственного университета для специальности 6-05-0611-01 Информационные системы и технологии профилизаций Информационные системы и технологии в экологии (рег.№159-23/уч. от 07.04.2023) и Информационные системы и технологии в здравоохранении (рег.№160-23/уч. от 07.04.2023)

составители:

- А. А. Луцевич, доцент кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета, кандидат педагогических наук, доцент;
- Е. В. Федоренчик, старший преподаватель кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический 'институт им. А.Д. Сахарова» Белорусского государственного университета

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 1/от 20 июнд 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № g от $\mathcal{L}\mathcal{B}$ имоня 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины:

- представить основные компоненты механики, термодинамики электростатики, как стройную теорию механического движения макро и микротел, подтверждаемую всей совокупностью экспериментальных фактов, как результат обобщения наблюдений, практического опыта и эксперимента и овладение умением применять эти знания на практике.
- формирование современного физического мышления и научного мировоззрения; систематизация и обобщение знаний с точки зрения общих идей, соответствующих современному уровню развития науки, а именно: о единстве мира, о фундаментальности вероятностных закономерностей, о всеобщности принципа симметрии, принципа соответствия, идей, формирующих новые приемы мышления.

Задачи учебной дисциплины:

- формирование представления о моделях и методах описания и исследования механической и молекулярной формы движения вещества;
- изучение и понимание сущности основных законов механики,
 термодинамики и электростатики, законов движения макротел, и законов движения совокупностей микрочастиц, из которых состоят макротела;
- освоение основных методов экспериментальных исследований, формирование у студента навыков экспериментальной работы с измерительными приборами;
- развитие умений и навыков по применению полученных знаний для решения конкретных теоретических и практических задач, для правильного использования физических концепций и идей при их теоретической интерпретации;
- ознакомление его с основными принципами математической обработки результатов физического эксперимента.

Учебная дисциплина относится к дисциплинам государственного компонента. Базовыми учебными дисциплинами для учебной дисциплины «Физика» являются «Линейная алгебра и аналитическая геометрия» и «Математический анализ». В свою очередь учебная дисциплина «Физика» является необходимой базой для успешного освоения учебных дисциплин инженерного профиля.

Дисциплина «Физика» является фундаментом общенаучной и общетехнической подготовки и обеспечивает базовую подготовку будущего специалиста в области информационных систем и технологий, необходимых для решения теоретических и практических задач.

Поскольку физическая теория выражает связи между физическими явлениями и величинами в математической форме, то программа курса физики предусматривает не только ознакомление студентов с основными методами наблюдений, измерений и эксперимента, в процессе выполнения лабораторных работ в общем физическом практикуме, но и представление соответствующих

физических теорий в адекватной математической форме, чтобы научить студента использовать теоретические знания для решения практических задач как в области физики, так и на междисциплинарных границах физики с другими областями знаний.

Овладение физическими методами исследования и знание законов современной физики обеспечат создание теоретической базы для дальнейшей профессиональной деятельности выпускника.

Дисциплина физика необходима для изучения специальных дисциплин (аэрокосмические методы исследования, метеорология и климатология, динамика атмосферы, основы ландшафтоведения, медицинская физика, электроника и автоматизация эксперимента, современные компьютерные технологии, аппаратные средства информационных технологий и др.

Воспитательное значение учебной дисциплины «Физика» заключается в обучающихся формировании мировоззрения; y научного развитии аналитических способностей, креативности, исследовательских умений, необходимых для решения научных и практических задач; развитии познавательных способностей и активности: творческой инициативы, самостоятельности, ответственности и организованности; формировании способностей к саморазвитию, самосовершенствованию и самореализации.

Изучение данной учебной дисциплине способствует созданию условий для формирования интеллектуально развитой личности обучающегося, которой присущи стремление к профессиональному совершенствованию, активному участию в экономической и социально-культурной жизни страны, гражданская ответственность и патриотизм.

В результате изучения дисциплины «Физика» формируется следующая базовая профессиональная компетенция: применять основные понятия и законы физики для изучения физических явлений и процессов.

В результате изучения дисциплины «Физика» студент в соответствии с образовательным стандартом должен

знать:

- основные модели, применяемые в механике, термодинамике, статистической физике и электростатике;
- основные понятия механики, термодинамики, статистической физики и электростатики;
- условия применимости законов, теорем и принципов, применяемых в механике и термодинамике, основные положения молекулярно-кинетической теории строения вещества, основные понятия электростатики;
- основные модели и законы, применяемые для описания агрегатных состояний вещества, законы, описывающие фазовые переходы;
 - общие методы измерений физических величин;
 - основы механики сплошной среды;
- применение основных законов механики к описанию механического движения человека;

- физические основы слухового восприятия;
- основные направления применения ультразвука в науке и технике;
- основные принципы и методы измерения физических величин, методы обработки результатов измерений;

уметь:

- проводить типовые измерения физических величин и обработку их результатов;
- анализировать и моделировать на основе законов физики технологические процессы, принципы действия технических устройств, строить их физико-математические модели;
 - применять законы физики при решении прикладных инженерных задач;
- использовать измерительные приборы при экспериментальном изучении физических и технологических процессов;
- оценивать значения физических величин на основании упрощенных моделей;

иметь навык:

- оперировать профессиональным языком и самостоятельно работать с учебной и научной литературой в области информационных систем и технологий;
- применять современные научные знания и методологию учебного и научного исследования в области информационных систем и технологий;
- использовать современные информационные технологии решения типовых профессиональных задач;
- пользоваться основными принципами качественного и количественного описания физических процессов и явлений;
- оперировать основными принципами математического моделирования физических процессов и явлений;
 - владения математическими методами решения физических задач;
- использования измерительных приборов при проведении измерений физических величин;
- пользоваться методами обработки результатов экспериментальных исследований.

Дисциплина изучается в 1-м и 2-м семестре. На изучение дисциплины учебным планом отводится 212 часов, в том числе 84 аудиторных часа (из них лекции – 50 часов, практические занятия – 18 часов, лабораторные занятия – 16 часов). Форма получения высшего образования — очная (дневная). Форма промежуточной аттестации — экзамен в 1 семестре, дифференцированный зачет во 2 семестре.

Трудоемкость дисциплины составляет 6 зачетных единицы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Основы термодинамики и статистики. Основы электростатики

Тема 1.1. Основы термодинамики

Термодинамический и статистический методы исследования. Термодинамические параметры. Термодинамическое равновесие. Обратимые и необратимые процессы. Квазистатический процесс. Уравнение состояния системы. Идеальный газ. Уравнение состояния идеального газа. Внутренняя энергия идеального газа. Теплообмен и количество теплоты. Работа сил давления газа. Первое начало термодинамики. Теплоемкость как функция термодинамического процесса. Уравнение Майера. Адиабатический процесс. Уравнение Пуассона. Термодинамический цикл. КПД цикла (тепловой машины и холодильной установки). Цикл Карно. КПД цикла Карно (идеальной тепловой машины). Второй закон термодинамики. Неравенство Клаузиуса. Энтропия системы. Закон возрастания энтропии.

Тема 1.2. Основы классической статистики

Термодинамический и статический методы исследования. Понятие функции распределения (плотности вероятности) случайной величины. Распределение молекул идеального газа по скоростям (распределение Максвелла). Средняя, среднеквадратичная и наиболее вероятная скорости молекул. Распределение молекул идеального газа по координатам во внешнем поле (распределение Больцмана). Распределение Максвелла-Больцмана. Закон равнораспределения энергии по степеням свободы. Статистический смысл температуры. Статистический вес макросостояния. Статистический смысл энтропии. Энтропия и необратимость.

Тема 1.3. Реальные газы и жидкости. Фазовые переходы

Уравнение Ван-дер-Ваальса. Теоретические и экспериментальные изотермы. Критическое состояние. Фазовые переходы первого и второго рода, фазовые диаграммы, уравнение Клапейрона – Клаузиуса. Насыщенный пар.

Тема 1.4. Явления переноса

Кинематические характеристики молекулярного движения (средняя длина свободного пробега, частота столкновений). Экспериментальные законы переноса (теплопроводность, диффузия, внутреннее трение). Элементы молекулярной теория явлений переноса в газах, коэффициенты переноса.

Тема 1.5. Основы электростатики

Электрический заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции сил. Электростатическое поле. Напряженность электростатического поля. Напряженность поля точечного заряда и системы зарядов. Потенциал электростатического поля. Связь потенциала и напряженности электростатического поля. Потенциал поля точечного заряда и системы зарядов.

Раздел 2. Физические основы механики

Тема 2.1. Кинематика материальной точки и твердого тела

Механическое движение и механическая система. Материальная точка. Твердое тело. Система отсчета. Число степеней свободы механической системы. Кинематика материальной точки. Траектория, перемещение и путь. Скорость и ускорение. Вычисление пройденного пути. Тангенциальное и нормальное ускорения. Кинематика вращательного движения твердого тела. Угловая скорость и угловое ускорение. Связь между угловыми и линейными кинематическими величинами.

Тема 2.1. Динамика материальной точки

Причины изменения скорости тела. Инерциальные системы отсчета. Принцип относительности Галилея. Преобразования Галилея. Масса и импульс. Силы в природе. Второй закон Ньютона. Уравнение движения материальной точки в инерциальной системе отсчета. Уравнение движения материальной точки в неинерциальной системе отсчета.

Тема 2.3. Динамика механических систем и законы сохранения

Состояние механической системы. Сохраняющиеся величины. Силы внутренние и внешние. Замкнутая система. Импульс системы. Законы изменения и сохранения импульса системы. Центр масс. Уравнение движения центра масс. Система центра масс. Реактивное движение. Уравнение Мещерского И формула Циолковского. Работа И мощность Кинетическая энергия частицы и закон ее изменения. Понятие силового поля. Консервативные силы. Потенциальная энергия частицы в силовом поле. Связь между потенциальной энергией и силой поля. Полная механическая энергия частицы в силовом поле. Законы ее изменения и сохранения. Механическая энергия системы частиц. Законы изменения и сохранения механической энергии системы. Момент импульса частицы и момент силы относительно некоторой точки. Уравнение моментов. Момент импульса системы. Законы изменения и сохранения момента импульса системы.

Тема 2.4. Динамика твердого тела

Поступательное и вращательное движения абсолютно твердого тела. Момент силы и момент инерции. Теорема Гюйгенса - Штейнера. Уравнение динамики вращательного движения абсолютно твердого тела вокруг неподвижной оси. Свободные оси вращения. Закон сохранения момента импульса. Кинетическая энергия вращательного движения твердого тела. Неинерциальные системы отсчета. Силы инерции.

Тема 2.5. Колебания и упругие волны

Общие сведения о колебаниях. Уравнение свободных колебаний под действием квазиупругой силы и его общее решение. Гармонический осциллятор. Энергия гармонического осциллятора. Сложение гармонических колебаний. Физический и математический маятники (малые колебания без затухания). Уравнение затухающих колебаний и его решение. Уравнение вынужденных колебаний и его решение. Явление резонанса, определение его характеристик. Основные характеристики напряжений в упругих средах.

Распространение волн в упругой среде. Продольные и поперечные волны. Фронт волны и волновая поверхность. Фазовая скорость волны. Длина волны. Плоские, сферические и цилиндрические волны. Уравнение плоской и сферической волны. Волновое уравнение для плоской волны. Связь скорости плоской волны с характеристиками упругой среды. Энергия плоской упругой волны. Вектор Умова.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

		Количество аудиторных				
			часов			
Номер раздела, темы,	Название раздела, темы	Лекции	Практические (семинарские)	Лабораторные занятия	Иное	Формы контроля знаний
1	2	3	4	5	6	7
	Раздел 1. Основы термодинамики и статистики. Основы электростатики					
1	Основы термодинамики	6	2		метод. пособие	1 – 6
2	Основы классической статистики	6	2		метод. пособие	1 – 6
3	Реальные газы и жидкости. Фазовые переходы	4			метод. пособие	1-6
4	Явления переноса	2			метод. пособие	1 – 6
5	Основы электростатики	8	2		метод. пособие	1 – 6
	Контрольная работа № 1		2			
	Всего раздел 1	26	8			
	Раздел 2. Физические основы механики					
6	Кинематика материальной точки и твердого тела	4	1		метод. пособие	1 – 6
7	Динамика материальной точки	6	1	4	метод. пособие	1 – 6
8	Динамика механических систем и законы сохранения	6	2	4	метод. пособие	1 – 6
9	Динамика твердого тела	4	2	4	метод. пособие	1 – 6
10	Колебания и упругие волны	4	2	4	метод. пособие	1 – 6
	Контрольная работа № 2		2			
	Всего раздел 2	24	10	16		
	ВСЕГО	50	18	16		

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 1 : Механика / Д. В. Сивухин. -5 —е изд., стер. М. : ФИЗМАТЛИТ , 2010. 560 с.
- 2. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 2 : Термодинамика и молекулярная физика / Д. В. Сивухин. -5 —е изд., испр. М. : ФИЗМАТЛИТ, 2006. -544 с.
- 3. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 3 : Электричество / Д. В. Сивухин. -5 —е изд., стер. М. : ФИЗМАТЛИТ , 2009. 656 с.
- 4. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 4 : Оптика / Д. В. Сивухин. 3 –е изд., стер. М. : ФИЗМАТЛИТ, 2006. 792 с.
- 5. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 5 : Атомная и ядерная физика / Д. В. Сивухин. -3 —е изд., стер. М. : ФИЗМАТЛИТ , 2008. -784 с.
- 6. Ташлыкова –Бушкевич, И. И. Физика : учебник : в 2 ч. / И. И. Ташлыкова –Бушкевич . 2 –е изд., испр. Минск : Выш. шк. . Ч.1 : Механика. Молекулярная физика и термодинамика. Электричество и магнетизм. 2014. 303 с.

Дополнительная

- 7. Апанасевич, Е. Е. Пособие по решению задач по физике (Механика) : учеб.-метод. пособие / Е. Е. Апанасевич, Е. Л. Бокатая, Е. В. Федоренчик. Минск : МГЭУ им. А.Д. Сахарова, 2010. 108 с.
- 8. Курс общей физики. Ч. I: Механика. Основы термодинамики, физики реальных газов, жидкостей и твердого тела. Киев: Дніпро, 1994. 350 с.
- 9. Луцевич, А. А. Физика / А. А. Луцевич, С. В. Яковенко. Минск: Вышэйшая школа, $2000.-495~\mathrm{c}.$
- 10. Луцевич, А. А. Физика: весь школьный курс в таблицах / А. А. Луцевич. Минск: Юнипресс, 2010. 416 с.
- 11. Малишевский, В. Ф. Вспомним школьную физику. Механика (в помощь первокурснику) : учеб.-метод. пособие / В. Ф. Малишевский, А. А. Луцевич. Минск : МГЭУ им. А.Д. Сахарова, 2014. 102 с.
- 12. Механика: учебно-методический комплекс [Электронный ресурс] / сост. Т. С. Чикова. Электрон. дан. (106 Мб). Минск: МГЭИ имени А.Д. Сахарова БГУ, 2022. Электрон. носитель.
- 13. Фриш, С. Э. Курс общей физики : учебник : в 3 т. / С. Э. Фриш, А. В. Тиморева. 10-е изд., стер. СПб : Лань, 2009. 656 с.
- 14. Яковенко, В. А. Общая физика. Механика : учебник / В. А. Яковенко, Г. А. Заборовский, С. В. Яковенко ; под общ. ред. В. А. Яковенко. Минск : Выш. шк., 2015. 383 с.

Перечень рекомендуемых средств диагностики

С целью диагностики знаний, умений и навыков студентов по данной дисциплине рекомендуется использовать:

- 1) контрольные работы;
- 2) самостоятельные работы;
- 3) коллоквиумы по пройденному теоретическому материалу;
- 4) устный опрос в ходе практических занятий;
- 5) проверку конспектов лекций студентов;
- 6) тестирование, включая компьютерное.

Инновационные подходы и методы к преподаванию учебной дисциплины

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

В процессе чтения лекций используются мультимедиа презентации с использованием видео- и аудио- технологий демонстрации физических понятий и их связи с окружающим миром.

В процессе проведения практических заданий используются дидактические материалы, включающие задачи повышенной сложности. Использование дидактических материалов позволяет работать хорошо успевающим студентам с большим коэффициентом полезного действия.

Изучение предусматривает дисциплины систематическую самостоятельную работу студентов рекомендуемыми **учебно**c методическими материалами, Internet-источниками и другими источниками. Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе учебно-методических комплекс *учебных* материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам курса (модуля).

Темы самостоятельных работ

- 1. Динамика материальной точки и системы материальных точек
- 2. Законы сохранения

- 3. Динамика вращательного движения твердого тела
- 4. Движение в поле тяготения
- 5. Колебательное движение
- 6. Температура. Методы измерения температуры.
- 7. Экспериментальное подтверждение распределения Максвелла-Больцмана. Опыты Штерна, Перрена.
- 8. Теплоемкости реальных газов, опыты по определению теплоемкости. Расхождение экспериментальных и теоретических значений теплоемкостей газов.

Темы лабораторных занятий

- 1. Точность прямых измерений в механике. «Анализ статистических ошибок, возникающих при измерении фонового излучения.
- 2. Точность косвенных измерений в механике. «Анализ точности косвенных измерений на примере измерения геометрических размеров твердых тел и определении их объемов.
- 3. Законы сохранения в механике. Анализ возможностей определения физических параметров твердых тел при их соударениях друг с другом.
- 4. Механические колебания и волны. Анализ возможностей определения характеристик колебательных систем с распределенными параметрами при их возбуждении внешними переменными полями.
- 5. Вращательное движение твердых тел. Анализ возможностей определения моментов инерции твердых тел с помощью трифилярного подвеса.
- 6. Определение отношения теплоемкостей газов методом Клемана Дезорма.
 - 7. Определение коэффициента теплопроводности воздуха.
- 8. Определение коэффициента поверхностного натяжения жидкости методом Ребиндера.

Темы контрольных работ

- 1. Кинематика материальной точки. Динамика материальной точки и системы материальных точек. Законы сохранения. Динамика вращательного движения твердого тела. Движение в поле тяготения.
- 2. Основное уравнение МКТ. Распределение Максвелла. Явления переноса. Первое начало Термодинамики. КПД циклов. Реальные газы.

Протокол согласования учебной программы

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			