C41

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ Директор МГЭЙ им. А. И. Сахарова БГУ О. И. Родькин 2025

Регистрационный № УД-<u>/440-25</u>/уч.

РАДИОФАРМАЦЕВТИЧЕСКИЕ ПРЕПАРАТЫ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛЬ:

Е.В. Емельяненко, доцент кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета, кандидат технических наук

РЕЦЕНЗЕНТЫ:

М.Н. Петкевич, начальник отдела по инженерному обеспечению лучевой терапии ГУ «Республиканский научно-практический центр онкологии и медицинской радиологии имени Н.Н. Александрова», магистр по медицинской физике;

С.Е. Головатый, заведующий кафедрой экологического мониторинга и менеджмента учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета, доктор сельскохозяйственных наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 11 от 20 инона 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № g от g

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Целью изучения дисциплины является профессиональная подготовка в изучении принципов производства и использования современных радиофармацевтических лекарственных средств.

Задачи учебной дисциплины — показать возможности современной ядерной медицины в области диагностики и терапии, с использованием примеров из практической деятельности, а также и что знания и навыки, полученные в результате изучения данной дисциплины, могут использоваться студентами непосредственно при выполнении аттестационной работы и в последующей профессиональной деятельности.

Учебная программа «Радиофармацевтические препараты» — дисциплина модуля «Ядерная медицина» разработана для студентов специальности

6-05-0533-03 Медицинская физика в соответствии с требованиями образовательного стандарта и учебного плана специальности.

Ядерная медицина — направление современной медицины, использующее радиоактивные вещества — радиофармацевтические лекарственные средства (РФЛС) и радионуклиды (РН) для диагностики и терапии в различных областях научной и практической медицины. Это уникальная сфера деятельности, в которой гармонично сочетаются знания физики, химии, биологии, фармации, высокой технологии и медицины, результатом которой является диагностика и лечение заболеваний с помощью РФЛС.

Воспитательное значение учебной дисциплины «Радиофармацевтические препараты» заключается формировании студентов естественнонаучного мировоззрения понимания фундаментальных принципов ядерной медицины; развитии исследовательских навыков, аналитических способностей и креативного необходимых ДЛЯ разработки И применения радиофармпрепаратов в диагностике и терапии; воспитании познавательной активности: научной любознательности, самостоятельности в принятии решений, ответственности при работе с радиоактивными материалами и организованности в исследовательской деятельности.

Изучение данной дисциплины способствует формированию профессионально значимых качеств: способности к самообразованию и инновационному мышлению, стремления к освоению передовых медицинских технологий, готовности к работе на стыке фармации, ядерной физики и клинической медицины.

Освоение курса создаёт условия для становления высококвалифицированного специалиста, обладающего не только глубокими профессиональными знаниями, но и гражданской позицией, проявляющейся в осознании важности своей работы для развития отечественного здравоохранения, готовности внедрять современные радиофармацевтические

технологии для улучшения качества медицинской помощи населению страны.

Студент должен владеть следующими универсальными и базовыми профессиональными **компетенциями**:

- владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации;
- применять основные методы получения и использования радиофармпрепаратов для радионуклидной диагностики и лечения различных заболеваний при решении профессиональных задач.

В результате освоения программы дисциплины студент должен:

знать:

- виды производства радиофармацевтических лекарственных средств;
- устройство и принципы работы оборудования, используемого для производства РФЛС;
 - современные РФЛС и их назначение;
 - нормативные документы по контролю качества РФЛС.

уметь:

- интерпретировать результаты измерения радиоактивности, определять физико-химические и биохимические параметры и свойства изучаемых с помощью меченых соединений и радиофармпрепаратов систем;
- пользоваться источниками информации по синтезу, анализу и применению меченых соединений и радиофармпрепаратов, включая периодические издания и компьютерные базы данных.

иметь навык:

- использовать методы работы с радиофармпрепаратами;
- использования специализированного оборудования;
- приемов работы с нормативной: документацией;
- анализировать и применять научную информацию.

Дисциплина изучается в VI семестре. Программа курса рассчитана на 108 часов, из которых аудиторных – 54 часов (30 часов – лекционных, 24 часа – семинарских занятий).

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет.

Трудоемкость дисциплины составляет 3 зачетные единицы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. Введение. Взаимодействие ИИ с веществом

Вводная лекция. Закон радиоактивного распада. Взаимодействие излучения с веществом. Основы радиобиологии, радиосенсибилизаторы и радиопротекторы.

Тема 2. Методы получения радионуклидов

Методы получения радионуклидов в ядерном реакторе и на ускорителях. Технические особенности работы циклического ускорителя. Радионуклиды для ПЭТ. Генераторные нуклиды. Особенности радиофармацевтических препаратов для ПЭТ. РФП на основе 15 O, 13 N, 18 F. Контроль качества радиофармацевтических средств.

Тема 3. Методы контроля качества РФЛС

Оборудование, применяемое для контроля качества РФЛС. Требования GMP. Основные этапы контроля качества РФЛС.

Тема 4. Структура радиохимической лаборатории в центре ядерной медицины

Технологический процесс производства РФЛС. Радиационная безопасность в циклотронно-радиохимической лаборатории.

Тема 5. Радионуклидная терапия

Препараты, применяемые для радионуклидной терапии. Тераностика. Тераностические пары радионуклидов.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(очная (дневная) форма получения высшего образования)

	(очная (дневная) форма получения высшего ооразования)							
		Количество аудиторных					Ä	
ИЫ			часов					
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Форма контроля знаний	
1	2	3	4	5	6	7	9	
1	Введение. Взаимодействие ИИ с веществом	6		4			опрос, самост. раб.	
2	Методы получения радионуклидов	6		6			опрос, самост. раб.	
3	Методы контроля качества РФЛС	6		6			опрос, самост. раб.	
4	Структура радиохимической лаборатории в центре ядерной медицины	6		6			опрос, самост. раб.	
5	Радионуклидная терапия	6		2			опрос, самост. раб.	
	Итого	30		24				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемая литература

Основная:

- 1. Климанов, В. А. Ядерная медицина. Радионуклидная диагностика : учеб. пособие / В. А. Климанов. 2—е изд., испр. и доп. М. : Юрайт, 2018. 307 с.
- 2. Королюк, И.П. Лучевая диагностика: учебник / И.П. Королюк, Л.Д. Линденбратен. 3—е изд., перераб. и доп. М.: БИНОМ, 2013. 496 с.
- 3. Лучевая диагностика и лучевая терапия : учеб. пособие / А.И. Алешкевич, В.В. Рожковская, И. И. Сергеева [и др.]. Минск : Новое знание, 2017. 382 с.
- 4. Лучевая терапия (радиотерапия) : учебник / Г. Е. Труфанов, М. А. Асатурян, Г. М. Жаринов [и др.] ; под ред. Г.Е. Труфанова. 3—е изд. перераб. и доп. М. : ГЭОТАР–Медиа, 2018. 208 с.
- 5. Романцова, И.В. Сборник задач по дозиметрии и защите от ионизирующих излучений : учебное пособие / И.В. Романцова, В.В. Ткаченко, В.А. Кутьков ; Мин–во науки и высшего образования РФ, Нац. исследовательский ядерный ун–т "МИФИ". 3–е изд., доп. и перераб. Москва : НИЯУ МИФИ, 2022. 208 с.

Дополнительная:

- 6. Анохин, Ю.Н. Применение ядерных и радиационных технологий в медицине: учебник / Ю.Н. Анохин. Москва: ИНФРА-М, 2024. 233 с.
- 7. Бажукова, И. Н. Технологии ядерной медицины : учеб. пособие / И.Н. Бажукова, С.И. Бажуков, А. А. Баранова ; М-во науки и высш. Обр. РФ. Екатеринбург : Изд-во Урал. Ун-та, 2022. 104 с.
- 8. Богородская, М. А. Химическая технология радиофармацевтических препаратов : курс лекций : учеб. пособие / М. А. Богородская, Г.Е. Кодина М. : ФМБЦ им. Бурназяна ФМБА России; РХТУ им. Д.И .Менделеева, 2010.-462 с.
- 9. Избранные лекции по основам создания лекарственных препаратов : учебное пособие / А. А. Спасов, Д. С. Яковлев, В. А. Косолапов [и др.]. Волгоград : ВолгГМУ, 2024. 176 с.
- 10. Мельникова, Н. Б. Радиофармацевтические препараты. получение и контроль качества : учебное пособие / Н. Б. Мельникова, А. А. Балакирева. Нижний Новгород : ННГУ им. Н. И. Лобачевского, 2022. 132 с.
- 11. Озерская, А.В. Производство и применение радиофармацевтических лекарственных препаратов в ядерной медицине : учебное пособие / А. В. Озерская, Е. С. Тютрина, Е. Е. Савельева. 2-е изд., перераб. и доп. Красноярск : КрасГМУ им. проф. В.Ф. Войно-Ясенецкого, 2023. 89 с.

- 12. Скуридин, В. С. Фармацевтическая технология. Методы и технологии получения радиофармпрепаратов: учебное пособие для вузов / В. С. Скуридин. Москва: Издательство Юрайт, 2021. 139 с.
- 13. Шустова, Е. А. Фармацевтическая химия. Часть 1 : учебное пособие / Е. А. Шустова, А. А. Сторикова, Э. Н. Кутлалиева. Астрахань : Издво ФГБОУ ВО Астраханский ГМУ Минздрава России, 2022. 104 с.

Перечень рекомендуемых средств диагностики

Для текущего контроля и самоконтроля знаний и умений студентов рекомендуется использовать устные опросы, письменные работы или тесты по отдельным темам курса, защиту подготовленного студентом сообщения или реферата и индивидуальных заданий.

Инновационные методы и подходы к преподаванию дисциплины

При организации образовательного процесса используется:

метод анализа конкретных ситуаций (кейс-метод), который предполагает:

- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники.

метод проектного обучения, который предполагает:

- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

метод учебной дискуссии который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, семинарские занятия, самостоятельная работа студентов.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

На семинарских занятиях студенты под руководством преподавателя обсуждают заранее подготовленные сообщения, доклады или рефераты по ключевым темам курса. Студенты активно участвуют в обсуждении, задают вопросы, дискутируют, анализируют материалы и высказывают собственные мнения.

Самостоятельная работа студентов может быть направлена на изучение научных статей, подготовку сообщений и рефератов, подготовку материалов, научных докладов, научно-исследовательских работ для участия в научно-практических конференциях, конкурсах.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Качество самостоятельной работы студентов целесообразно проверять в ходе текущего промежуточного и итогового контроля в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам дисциплины (модулям).

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплина не требуется			