Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ
Директор от тут мар о

ЭЛЕКТРОДИНАМИКА

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛЬ:

О.М. Бояркин, профессор кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова БГУ», доктор физико-математических наук, профессор

РЕЦЕНЗЕНТЫ:

- В. В. Махнач, доцент кафедры физико-математических дисциплин Института информационных технологий Белорусского государственного университета информатики и радиоэлектроники, кандидат физико-математических наук, доцент;
- В. А. Иванюкович, доцент кафедры информационный технологий в экологии и медицине учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 11 от 20 июме 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол N_2 G от M_3 M_4 M_5 M_6 M_6

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины — формирование у студентов фундаментальных знаний и навыков в области специальной теории относительности и классической электродинамики, необходимых для решения теоретических и прикладных задач в медицинской физике. Дисциплина направлена на освоение математического аппарата, принципов описания электромагнитных явлений, а также на развитие научного мировоззрения и профессиональных компетенций, связанных с анализом и моделированием физических процессов в медицине и смежных областях.

Задачи учебной дисциплины:

- систематически и полно изложить студенту основные принципы и законы специальной теории относительности;
 - ознакомить студентов с математическим аппаратом электродинамики;
- дать представление о подходах, используемых в электродинамике при описании поведения частиц в вакууме и веществе;
- научить студента количественно формулировать и решать задачи, описывающие электродинамические явления;
 - способствовать развитию научного мировоззрения.

Учебная дисциплина «Электродинамика» вместе с дисциплиной «Теоретическая механика» составляют модуль «Теоретическая физика-1» государственного компонента **учебного** плана. Предполагает предварительное дисциплин «Математический анализ», изучение «Аналитическая геометрия и линейная алгебра», «Дифференциальные уравнения», «Основы векторного и тензорного анализа», «Механика», Изучение «Электричество магнетизм» др. дисциплины «Электродинамика» необходимо для дальнейшего освоения дисциплин «Термодинамика и статистическая физика», «Электроника медицинских физических установок и автоматизация управления ими».

физики процессе преподавания теоретической сосредоточить внимание студентов на наиболее общих понятиях, принципах и законах физики и научить студентов применять эти принципы и законы для физических процессов и явлений. конкретных дисциплины должно сопровождаться содержательными физическими примерами, поясняющими общетеоретические положения. С необходимой полнотой и подробностью следует излагать вопросы, связанные с теми или иными допущениями и ограничениями в теории, с постановкой задачи и интерпретацией результатов, выяснением физической применимости разработанных методов и с возможными обобщениями теории. Курс теоретической физики должен играть решающую роль в завершении формирования целостных представлений о современной физической картине мира.

Дисциплина «Электродинамика» обеспечивает базовую подготовку по специальной теории относительности и основам электродинамики будущих медицинских физиков, необходимую ИМ ДЛЯ теоретических и практических задач в области медицины. По окончании изучения дисциплины будущие специалисты должны усвоить основные **RNTRHOU** представления электродинамики И специальной относительности и подготовиться к их использованию для решения важнейших теоретических и прикладных задач, обусловленных широким внедрением в медицинскую практику сложных физико-технических систем, возникающих при создании принципиально новых систем исследований и контроля живого организма.

Воспитательное значение учебной дисциплины «Электродинамика» заключается В формировании y студентов фундаментальных представлений о природе электромагнитных явлений и современной физической картины мира; развитии навыков теоретического анализа и математического моделирования электромагнитных процессов; воспитании способности к критическому мышлению, научной интуиции и творческому подходу при решении сложных физических формировании таких качеств, как точность, аккуратность, системность И ответственность при проведении теоретических экспериментальных исследований.

Изучение данной дисциплины способствует становлению высококвалифицированного специалиста, обладающего глубокими знаниями в области фундаментальной и прикладной физики, готового к участию в разработке новых технологий и решению актуальных научно-технических проблем. У студентов развивается стремление к профессиональному росту, инновационной деятельности, а также социально значимые качества: гражданская позиция, осознание важности научного прогресса для развития общества и патриотизм, направленный на укрепление научно-технического потенциала страны.

При изучении учебной дисциплины студент должен овладеть следующими универсальными и базовыми профессиональными компетенциями:

- владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации;
- использовать уравнения микро- и макроскопической электродинамики для расчета полей и потенциалов, создаваемых стационарными и подвижными зарядами, для описания электромагнитных волн в вакууме и в среде, в безграничном пространстве и в ограниченном

объеме, для нахождения распределения зарядов и токов при заданных полях для решения профессиональных задач.

В результате усвоения дисциплины студент должен:

знать:

- основные принципы и положения специальной теории относительности;
 - методы описания поведения микро- и макро-частиц в веществе;
 - точные решения уравнений Максвелла для простейших систем;
- основные модели, применяемые в электродинамики для решения важнейших прикладных задач;
- структуру, тенденции развития и использования достижений современной физики.

уметь:

- использовать преобразования Лоренца для вычисления электромагнитных полей в различных инерциальных системах отсчета;
- вычислять энергетические пороги различных процессов с элементарными частицами;
- решать уравнения Максвелла в случаях постоянных и однородных электромагнитных полей
- определять траектории частиц в различных конфигурациях электромагнитных полей.

иметь навык:

- пользоваться математическим аппаратом специальной теории относительности;
 - владеть основами представления о структуре материи;
- владеть фундаментальными принципами релятивистской электродинамики.

Дисциплина изучается в 5 семестре. В соответствии с учебным планом изучение дисциплины рассчитано на общее количество часов 210. Аудиторное количество часов 120, из них лекции -60 ч, практические занятия -60 ч.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет и экзамен в 5 семестре.

Трудоемкость дисциплины составляет 5 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Введение

Экспериментальные основы CTO. Постулаты Эйнштейна. Преобразования Лоренца. кинематические Основные результаты преобразований Лоренца: относительность промежутков времени, собственное масштабов время, относительность пространственных (расстояний), преобразование скоростей и ускорений. Объяснение явления аберрации звезд.

2. Математический аппарат СТО

Четырехмерная формулировка преобразований Лоренца. Преобразования Лоренца как повороты в четырехмерном пространстве. Четырехмерные тензоры. Интервал между событиями и его инвариантность. 4-мерная скорость.

Вывод закона сложения скоростей. 4-мерный импульс. Релятивистская энергия и релятивистский 3-мерный импульс.

Математическая формулировка принципа относительности: ковариантная форма записи физических законов. Релятивистскоковариантное объединение законов Ньютона. Сила Минковского. Закон преобразования сил. Границы применимости механики Простейшие задачи релятивистской динамики частицы.

3. Основы релятивистской механики

Предмет классической электродинамики, ее место среди других физических теорий. Электромагнитное взаимодействие. Элементарные частицы в СТО. 4-потенциал поля. Действие для заряженной частицы. Уравнения движения заряда в поле. Сила Лоренца. Калибровочная инвариантность электродинамики. Постоянное электромагнитное поле. Частица в постоянном и однородном электрическом поле. Движение частицы в постоянном и однородном магнитном поле. Заряженная частица в постоянных электрическом и магнитном полях. Тензор электромагнитного поля. Преобразование Лоренца для электромагнитного поля. Инварианты поля.

4. Уравнения Максвелла

Действие для электромагнитного поля. Первая пара уравнений Максвелла. 4-вектор тока. Уравнение непрерывности и его связь с законами сохранения. Вторая пара уравнений Максвелла. Плотность и поток энергии электромагнитного поля. Дуальная инвариантность уравнений Максвелла. Магнитные монополи.

5. Излучение

Волновое уравнение. Плоские волны. Монохроматическая плоская волна. Спектральное разложение. Поляризация. Запаздывающие и опережающие потенциалы. Потенциалы Лиенара-Вихерта. Спектральное разложение запаздывающих потенциалов. Поле системы зарядов на далеких расстояниях. Дипольное излучение. Излучение зарядов, движущихся с ускорением. Торможение излучением.

учебно-методическая карта учебной дисциплины

[b]		Количество аудиторных часов					ний
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Форма контроля знаний
1	2	3	4	5	6	7	9
1	Введение	8	4				опрос
2	Математический аппарат СТО	20	20				1 – 6
3	Основы релятивистской механики	14	18				1 – 6
	Контрольная работа №1		2				
4	Уравнения Максвелла	10	12				1 – 6
5	Излучение	8	2				1 – 6
	Контрольная работа №2		2				
	Итого	60	60				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемая литература

Основная

- 1. Ландау, Л. Д. Теоретическая физика : учеб. пособие : в 10 т. Т. 4. Квантовая электродинамика / Л. Д. Ландау, Е. М. Лифшиц ; В. Б. Берестецкий, Л. П. Питаевский. Изд. 4 –е, испр. М. : ФИЗМАТЛИТ, $2006.-720~\rm c.$
- 2. Ландау, Л. Д. Теоретическая физика: учеб. пособие: в 10 т. Т. 8: Электродинамика сплошных сред / Л. Д. Ландау, Е. М. Лифшиц; под ред. Л. П. Питаевского. Изд. 4 –е, стер. М.: ФИЗМАТЛИТ, 2005. 656 с.

Дополнительная

- 6. Богуш, А. А. Ведение в калибровочную полевую теорию электрослабых взаимодействий / О. М. Бояркин. М.: УРСС, 2020. 345 с.
- 7. Бояркин, О. М. Физика массивных нейтрино / О. М. Бояркин. М. : Комкнига, 2017. 212 с.
- 8. Бояркин, О. М. Физика частиц. Квантовая электродинамика и стандартная модель / О. М. Бояркин, Г. Г. Бояркина. М. : Издательство "Книжный дом", 2020.-436 с.
- 9. Бояркин, О. М. Физика частиц. От электрона до бозона Хиггса. Квантовая теория свободных полей / О. М. Бояркин, Г. Г. Бояркина. М. : Издательство "Книжный дом", 2020.-291 с.
- 10. Бояркин, О. М. Введение в физику элементарных частиц / О. М. Бояркин. М. : КомКнига, 2025. 260 с.
- 11. Елютин, П. В. Квантовая механика с задачами / П. В. Елютин , В. Д. Кривченков. М. : УРСС, 2022. 302 с.
- 12. Ландау, Л. Д. Квантовая механика. Нерелятивистская теория / Л. Д. Ландау, Е. М. Лифшиц. М.: УРСС, 2019. 800 с.

Перечень рекомендуемых средств диагностики

- 1. Контрольные работы;
- 2. Самостоятельные работы;
- 3. Тесты;
- 4. Коллоквиумы по пройденному теоретическому материалу;
- 5. Устный опрос в ходе практических занятий;
- 6. Проверку конспектов лекций студентов.

Инновационные методы и подходы к преподаванию дисциплины

При организации образовательного процесса используется:

метод анализа конкретных ситуаций (кейс-метод), который предполагает:

- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники.

метод проектного обучения, который предполагает:

- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

метод учебной дискуссии который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, практические занятия, самостоятельная работа студентов.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

На практических занятиях следует обратить особое внимание на решение задач с прикладным содержанием из физики микромира, имеющих важное значение для описания структуры вещества на уровне атома и клетки.

Самостоятельная работа студентов может быть направлена на изучение научных статей, подготовку сообщений и рефератов, подготовку материалов, научных докладов, научно-исследовательских работ для участия в научно-практических конференциях, конкурсах.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Качество самостоятельной работы студентов целесообразно проверять в ходе текущего промежуточного и итогового контроля в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам дисциплины (модулям).

Темы самостоятельных работ

- 1. Вывод преобразования Лоренца при произвольной относительной скорости ИСО.
 - 2. Релятивистская частица в электромагнитном поле
 - 3. Дуальная инвариантность свободных уравнений Максвелла.
 - 4. Тензор энергии-импульса для электромагнитного поля.
 - 5. Метод функций Грина для решения электромагнитных задач

Вопросы к экзамену

- 1. Постулаты СТО.
- 2. Преобразование Лоренца.
- 3. Закон преобразования скоростей в СТО.
- 4. Сокращение длин и промежутков времени.
- 5. Загадка *µ* мезонов.
- 6. Одновременность событий.
- 7. Четырехмерное пространство Минковского. Интервал.
- 8. Четырехмерные тензора.
- 9. Четырехмерная скорость и ускорение.
- 10. Действие для свободной частицы.
- 11. Импульс и энергия в релятивистском случае.
- 12. Четырехмерный импульс.
- 13. Четырехмерная сила. Сила Минковского.
- 14. Четырехмерный потенциал электромагнитного поля.
- 15. Движение заряженной частицы в электромагнитном поле.
- 16. Градиентная инвариантность.
- 17. Заряженная частица в постоянном и однородном электрическом поле.
- 18. Заряженная частица в однородном магнитном поле.
- 19. Уравнение движения заряда в электромагнитном поле в четырехмерной форме.
- 20. Преобразование Лоренца для электромагнитного поля.
- 21. Инварианты электромагнитного поля.
- 22. Первая пара уравнений Максвелла.
- 23. Действие и лагранжиан для электромагнитного поля.
- 24. Вторая пара уравнений Максвелла.
- 25. Уравнение непрерывности. Закон сохранения электрического заряда.
- 26.Плотность энергии электромагнитного поля. Вектор Умова-Пойнтинга.
- 27. Дуальная инвариантность уравнений электромагнитного поля.
- 28. Электрический квадрупольный момент.
- 29. Квазистационарное магнитное поле.
- 30. Магнитный дипольный момент.
- 31. Электромагнитные волны.

- 32.Запаздывающие потенциалы.
- 33. Потенциалы Лиенера-Вихерта.
- 34. Импульс электромагнитного поля.
- 35. Тензор энергии импульса (общий случай).
- 36. Тензор энергии импульса для электромагнитного поля.
- 37. Решение неоднородного волнового уравнения методом функции Грина.

Протокол согласования учебной программы

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			