C24

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ
Директор
МГЭИ им. А. И. Сахарова БГУ
О И. Родькин
2025
Регистрационный № УД-441-25 /уч.

ЦИФРОВАЯ ОБРАБОТКА ИЗОБРАЖЕНИЙ В МЕДИЦИНЕ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

составитель:

Е.В. Емельяненко, доцент кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» БГУ, кандидат технических наук

РЕЦЕНЗЕНТЫ:

М.Н. Петкевич, начальник отдела по инженерному обеспечению лучевой терапии ГУ «Республиканский научно-практический центр онкологии и медицинской радиологии имени Н.Н. Александрова», магистр по медицинской физике;

С.Е. Головатый, заведующий кафедрой экологического мониторинга и менеджмента учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета, доктор сельскохозяйственных наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 11 от 20 шоня 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 9 от 45 имогих 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Целью изучения дисциплины является профессиональная подготовка в изучении принципов медицинской визуализации и контроле качества визуализирующих систем и изображений.

Задачи учебной дисциплины — показать возможности современной медицинской визуализации с использованием примеров из практической деятельности и что знания и навыки, полученные в результате изучения данной дисциплины, могут использоваться магистрантами непосредственно при выполнении аттестационной работы магистра и в последующей профессиональной деятельности.

Учебная программа «Цифровая обработка изображений в медицине» - дисциплина модуля «Инженерия». Разработана для студентов специальности 6-05-0533-03 Медицинская физика в соответствии с требованиями образовательного стандарта и учебного плана специальности.

Стремительное развитие новых технологий и инструментальных средств диагностической визуализации обусловлено современными потребностями появлении новых человечества систем и методов, расширяющих возможности клинического мониторинга и улучшающих качество жизни людей. Значительное повышение технического уровня развития современных неинвазивных диагностических систем за счет совершенствования аппаратной реализации и технологий производства делает системы диагностической визуализации незаменимыми в повседневной клинической практике. При этом, наряду с прогрессом инструментальных средств, весьма существенную роль в настоящее время начинают играть компьютерные методы обработки графической информации. Современные методики компьютерной обработки биомедицинских изображений обеспечивают улучшение изображений для их наилучшего визуального восприятия врачом-диагностом, эффективное сжатие изображений для надежного хранения и быстрой передачи данных по каналам связи. Правильный набор методов визуализации позволяет получить полную информацию о состоянии всех элементов исследования рассматриваемых структур.

Воспитательное значение учебной дисциплины «Цифровая обработка изображений в медицине» заключается в формировании у студентов научнотехнического мировоззрения и цифровой культуры; развитии исследовательских умений, аналитических способностей и креативности, необходимых для решения задач медицинской визуализации и диагностики; развитии профессиональных компетенций и познавательной активности: инновационного подхода, точности в обработке данных, ответственности при работе с медицинскими изображениями и организованности; формировании способностей к профессиональному саморазвитию и самосовершенствованию в области цифровых медицинских технологий.

Изучение данной учебной дисциплины способствует созданию условий для формирования высококвалифицированного специалиста, которому присущи стремление к профессиональному совершенствованию, активное

внедрение современных методов цифровой обработки изображений в клиническую практику, гражданская ответственность при обеспечении качества диагностики и патриотизм, проявляющийся в развитии отечественных технологий медицинской визуализации.

Студент должен владеть следующими специализированными компетенциями: использовать современные методы и технологии обработки изображений для работы с медицинской информацией, анализировать характеристики исходных биологических материалов, используемых для создания изображений, применять методы получения и обработки пространственных данных, пространственного анализа и визуализации медико-биологической информации для решения профессиональных задач.

В результате освоения программы дисциплины студент должен:

знать:

- алгоритмы реконструкции изображения;
- устройство и принципы работы оборудования, используемого для медицинской визуализации;
 - программное обеспечение для медицинской визуализации;
 - методы получения и принципы обработки медицинского изображения;
- нормативные документы по контролю качества медицинских изображений;

уметь:

- определять модальность медицинского изображения;
- определять и классифицировать артефакты на медицинском изображении;
 - работать с программным обеспечением для анализа изображений;
 - оценивать качество медицинского изображения;

иметь навык:

- обработки и реконструкции медицинских изображений с использованием специализированного ПО;
- анализировать и интерпретировать медицинские изображения для диагностических целей;
- работы с оборудованием для медицинской визуализации (КТ, МРТ, УЗИ и др.);
- контроля качества медицинских изображений в соответствии с нормативными документами.

Дисциплина изучается в V семестре. Программа курса рассчитана на 98 часов, из которых 44 часа аудиторных (22 часа — лекционных, 22 часа — практических занятий).

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет.

Трудоемкость дисциплины составляет 3 зачетные единицы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Tema 1. Введение в медицинскую визуализацию. Обработка медицинских изображений. Хранение и анализ медицинских изображений

Общие характеристики медицинских диагностических изображений. Методы получения медицинских изображений Обработка медицинских изображений. Радиомика. Программное обеспечение для обработки и анализа медицинских изображений. Стандарт DICOM в компьютерных медицинских технологиях.

Тема 2. Визуализация в рентгеновской диагностике

Рентгеновские трубки. Основные конструктивные элементы рентгеновских трубок. Приемники рентгеновского излучения: рентгеновские пленки, полупроводниковые приемники рентгеновского излучения, усилители рентгеновского изображения, цифровые приемники рентгеновского изображения. Принцип особенности получения И рентгеновского изображения. Характеристики рентгеновского изображения. Математический аппарат просвечивающей рентгенографии.

Тема 3. Визуализация в рентгено-компьютерной диагностике

Принцип работы и устройство компьютерного томографа. Современные технологии компьютерной томографии (КТ). Диагностические возможности КТ. Реконструкция изображений в компьютерной томографии. Режимы сканирования. Артефакты изображений в компьютерной томографии. Артефакты, вызванные физическими процессами. Артефакты, вызванные пациентом. КТ изображения с контрастным усилением. Двухэнергетическая визуализация. Фантомы для контроля качества КТ изображений. Улучшение контраста изображений. Принципы и основные этапы контроля качества.

Тема 4. Визуализация в ядерной медицине

Позитронно-эмиссионная томография, совмещенная с компьютерной томографией. Конструкционные особенности ПЭТ/КТ. ПЭТ/МРТ, конструкционные особенности томографа. Детектирующая система ПЭТ. Этапы получения ПЭТ/КТ изображений. Артефакты изображений в ПЭТ (аппаратные артефакты, артефакты сбора данных, артефакты обработки данных). Реконструкционные алгоритмы изображений в ядерной медицине. Медицинские гамма-камеры. Основные физические характеристики гамма-камер. Пространственное разрешение. Контроль качества изображений в ядерной медицине. Протоколы контроля качества. Фантомы для контроля качества. Использование изображений ядерной медицины для планирования ЛТ. Гибридные системы (ПЭТ/МРТ).

Тема 5. Визуализация в нерадиационной медицине

Магнитно-резонансная томография. Физические основы MPT, основные блоки MP-томографа, построение MP- изображения. Гибридные системы (ПЭТ/MPT).

Эндоскопические методы визуализации (основные виды эндоскопического оборудования, принцип эндоскопического исследование, получение эндоскопического изображения).

Ультразвуковой метод визуализации. Взаимодействие ультразвуковых волн с биологическими тканями, ультразвуковое диагностическое изображение, артефакты в ультразвуковой диагностике, диагностическое значение метода.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ (очная (дневная) форма получения высшего образования)

I9I	Количество ау часов				аудиторных		ний
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Форма контроля знаний
1	2	3	4	5	6	7	9
1	Введение в медицинскую визуализацию. Обработка медицинских изображений. Хранение и анализ медицинских изображений	2	2				опрос, самост. раб.
2	Визуализация в рентгеновской диагностике	6	4				опрос, самост. раб.
3	Визуализация в рентгено-компьютерной диагностике	6	6				опрос, самост. раб.
4	Визуализация в ядерной медицине	6	4				опрос, самост. раб.
5	Визуализация в нерадиационной медицине	2	4				опрос, самост. раб.
	Контрольная работа		2				
	Итого	22	22				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемая литература

Основная:

- 1. Климанов, В. А. Ядерная медицина. Радионуклидная диагностика : учеб. пособие / В. А. Климанов. 2—е изд., испр. и доп. М. : Юрайт, 2018. $307~\rm c.$
- 2. Королюк, И. П. Лучевая диагностика: учебник / И. П. Королюк, Л. Д. Линденбратен. 3–е изд., перераб. и доп. М.: БИНОМ, 2013. 496 с.
- 3. Лучевая диагностика и лучевая терапия : учеб. пособие / А.И. Алешкевич, В.В. Рожковская, И.И. Сергеева [и др.]. Минск : Новое знание, 2017. 382 с.
- 4. Лучевая терапия (радиотерапия) : учебник / Г.Е. Труфанов, М.А. Асатурян, Г.М. Жаринов [и др.] ; под ред. Г.Е. Труфанова. 3—е изд. перераб. и доп. М. : ГЭОТАР–Медиа, 2018. 208 с.
- 5. Романцова, И.В. Сборник задач по дозиметрии и защите от ионизирующих излучений: учебное пособие / И.В. Романцова, В.В. Ткаченко, В.А. Кутьков; Мин–во науки и высшего образования РФ, Нац. исследовательский ядерный ун–т "МИФИ". 3–е изд., доп. и перераб. Москва: НИЯУ МИФИ, 2022. 208 с.

Дополнительна:

- 6. Jensen, J. R. Introductory Digital Image Processing. A Remote Sensing Perspective=Вводная цифровая обработка изображений. Перспектива дистанционного зондирования / J. R. Jensen. third edition. USA: Upper Saddle River, NJ, 2005. 526 p.
- 7. Бекман, И. Н. Ядерная медицина: физические и химические основы : учебник для бакалавриата и магистратуры / И. Н. Бекман . 2-е изд., испр. и дол. М. : Юрайт , 2018. 400 с.
- 8. Богданов, А. К. Практические применения современных методов анализа изображений в медицине / А. К. Богданов, В. Д. Проценко. М: РУДН, 2008. 77 с.
- 9. Богданова, Е. А. Визуализация данных 3D : учебное пособие / Е. А. Богданова, Е. И. Горожанина. Самара : ПГУТИ, 2018. 84 с.
- 10. Высокотехнологичные методы визуализации (физико-технические основы высокотехнологичных методов визуализации) : учебное пособие / А. А. Разинова, М. М. Гребенюк, А. В. Поздняков [и др.]. Санкт-Петербург: СПбГПМУ, 2019.-48 с.
- 11. Илясов, Л. В. Физические основы и технические средства медицинской визуализации : учебное пособие для вузов / Л. В. Илясов. 3-е изд., стер. Санкт-Петербург : Лань, 2021. 324 с.
- 12. Линденбратен, Л. Д. Медицинская радиология (основы лучевой диагностики и лучевой терапии) : учебник / Л. Д. Линденбратен, И. П. Королюк. Изд. 2-е, перераб. и доп. М. : Медицина, 2000. 672 с. Анисимов, Н. В. Магнитно-резонансная томография : управление контрастом

- и междисциплинарные приложения / Н. В. Анисимов, С. С. Батова, Ю. А. Пирогов. М : Физический факультет МГУ имени М. В. Ломоносова, 2013. 244 с.
- 13. Марченко, Е. С. Основы медицинской интроскопии : учебное пособие / Е. С. Марченко. Томск : ТГУ, 2018. 156 с.
- 14. Обмачевская, С. Н. Информационные технологии в профессиональной деятельности медицинских работников / С. Н. Обмачевская. 3-е изд., стер. Санкт-Петербург : Лань, 2022. 184 с.
- 15. Трофимов, А. Г. Анализ медицинских изображений: курс лекций: учебное пособие / А. Г. Трофимов. Москва: НИЯУ МИФИ, 2020. 132 с.
- 16. Труфанов, Г. Е. Лучевая диагностика : учебник / Г. Е. Труфанов и др. ; под ред. Г. Е. Труфанова. Москва : ГЭОТАР-Медиа, 2015. 496 с.
- 17. Уэстбрук, К. Магнитно-резонансная томография: справочник / К. Уэстбрук; пер. с англ. 3-е изд. М.: Лаборатория знаний, 2018. 400 с.
- 18. Федотов, А. А. Введение в цифровую обработку биомедицинских изображений : учебное пособие / А. А. Федотов. Санкт-Петербург : Лань, $2019.-108~\mathrm{c}.$
- 19. Филюстин, А. Е. Основы МРТ в медицинской практике : практическое пособие для врачей / А. Е. Филюстин, Г. Д. Панасюк, А. В. Доманцевич. Гомель : ГУ «РНПЦ РМиЭЧ», 2018. 25 с.

Перечень рекомендуемых средств диагностики

Для текущего контроля и самоконтроля знаний и умений студентов рекомендуется использовать устные опросы, письменные контрольные работы или тесты по отдельным темам курса, защиту подготовленного студентом сообщения или реферата и индивидуальных заданий.

Инновационные методы и подходы к преподаванию дисциплины

При изучении дисциплины «Цифровая обработка изображений в медицине» рекомендуется использовать практико-ориентированный подход, который предполагает: освоение содержания образования через решения практических задач; приобретение навыков эффективного выполнения разных видов профессиональной деятельности; ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры; использование процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, практические занятия, самостоятельная работа студентов.

В рамках лекционных занятий предусмотрено использование мультимедийных средств, а также специализированного программного обеспечения для просмотра и анализа диагностических изображений.

На практических занятиях студенты знакомятся с методами получения диагностических изображений, приобретают практические навыки в области

контроля качества современного диагностического оборудования. Контроль знаний проводят путем устных и письменных опросов на текущих занятиях.

Самостоятельная работа студентов может быть направлена на изучение научных статей, подготовку сообщений и рефератов, подготовку материалов, научных докладов, научно-исследовательских работ для участия в научно-практических конференциях, конкурсах.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

При этом не ставится цель охватить все стороны предмета или заменить другие формы работы. Подбор заданий для самостоятельной работы направлен на формирование базовых предметных компетенций путем применения теоретических знаний в конкретных ситуациях, а также на развитие активности и самостоятельности студентов.

Качество самостоятельной работы студентов целесообразно проверять в ходе текущего промежуточного и итогового контроля в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам дисциплины (модулям).

Примерный перечень самостоятельных работ:

- 1. Анализ стандарта DICOM.
- 2. Сравнение методов медицинской визуализации.
- 3. Исследование артефактов в КТ-изображениях.
- 4. Работа с программным обеспечением для обработки изображений
- 5. Контроль качества медицинских изображений.
- 6. Анализ алгоритмов реконструкции изображений.
- 7. Исследование гибридных систем визуализации.

Примерный перечень вопросов к зачету:

- 1. Основные методы медицинской визуализации и их сравнительные характеристики.
- 2. Принципы работы и устройство рентгеновских трубок. Характеристики рентгеновского изображения.
- 3. Алгоритмы реконструкции изображений в компьютерной томографии.
- 4. Особенности визуализации в ядерной медицине (ПЭТ/КТ, ПЭТ/МРТ).
 - 5. Стандарт DICOM: структура, применение, преимущества.
- 6. Основные артефакты в медицинских изображениях и методы их устранения.
- 7. Принципы контроля качества медицинских изображений. Нормативные документы.

- 8. Программное обеспечение для обработки и анализа медицинских изображений.
 - 9. Физические основы магнитно-резонансной томографии (МРТ).
- 10. Ультразвуковая диагностика: принципы, артефакты, диагностические возможности.
 - 11. Роль радиомики в современной медицинской визуализации.
- 12. Применение искусственного интеллекта в обработке медицинских изображений.
 - 13. Гибридные системы визуализации: преимущества и недостатки.
 - 14. Методы улучшения контраста и качества медицинских изображений.
- 15. Воспитательное значение дисциплины "Цифровая обработка изображений в медицине" для формирования профессиональных компетенций.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплина не требуется			