Ø18 H

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А Досахарова БГУ

__ О. И. Родькин

25 W Whome 2025

Репистрационный № УД-1445 15 /уч.

ФИЗИКА АТОМА И АТОМНЫХ ЯВЛЕНИЙ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛИ:

С.А. Маскевич, почетный профессор учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, доктор физико-математических наук, профессор;

С.А. Сокольский, доцент кафедры физической оптики и прикладной информатики 'Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕЦЕНЗЕНТЫ:

Н.Д. Стрекаль, профессор кафедры общей физики учреждения образования «Гродненский государственный университет им. Янки Купалы», доктор физико-математических наук, профессор;

А.И. Киевицкая, профессор кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, доктор физико-математических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 10 от 20 июля 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол 9 от 25 июна 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины — формирование базовых знаний по физике микроскопических явлений на атомно-молекулярном уровне и умения применять их для решения практических задач.

Задачи учебной дисциплины:

- 1. анализ развития атомистических и становления квантовых представлений;
- 2. изучение важнейших экспериментальных фактов атомной физики и их взаимосвязи;
- 3. выявление специфики микроявлений и несостоятельности классической теории для их объяснения;
- 4. изучение основ квантовой механики и методов решения квантовомеханических задач;
- 5. систематическое изучение и объяснение на основе квантовой теории строения и свойств атомов и молекул, их поведения во внешних полях и во взаимодействии друг с другом.
- 6. ознакомление с проявлением квантовых закономерностей в процессах, происходящих в организме человека.

Учебная дисциплина относится к модулю «Физика атома и физика ядра» государственного компонента наряду с учебной дисциплиной «Физика ядра и ионизирующего излучения».

Учебная дисциплина «Физика атома и атомных явлений» предполагает предварительное изучение дисциплин «Механика», «Молекулярная физика», «Электричество и магнетизм», «Оптика», «Теоретическая механика», «Электродинамика», «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Основы векторного и тензорного анализа», «Теория функций комплексной переменной», «Дифференциальные уравнения», «Теория вероятностей И математическая статистика», «Уравнения математической физики».

Воспитательное значение учебной дисциплины «Физика атома и атомных явлений» заключается в формировании у студентов научного мировоззрения и глубокого понимания фундаментальных законов природы; развитии исследовательских навыков, аналитического мышления способности к моделированию сложных физических процессов; воспитании познавательной творческого подхода активности, К решению ответственности и точности самостоятельности, B научной формировании стремления к саморазвитию, профессиональному росту и инновационной деятельности.

Изучение данной дисциплины способствует становлению высококвалифицированного специалиста, обладающего не только теоретическими знаниями, но и практическими умениями, готового к участию в современных научных и технологических разработках. У студентов развиваются такие качества, как стремление к познанию, гражданская

ответственность и патриотизм, направленные на укрепление научнотехнического потенциала и прогресс общества.

При изучении учебной дисциплины студент должен овладеть следующими универсальными и базовыми профессиональными компетенциями:

- владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации;
- применять квантово-механический подход для объяснения атомно-молекулярных явлений и оценки характеристик атомов молекул и кристаллов для решения профессиональных задач.

В результате изучения учебной дисциплины студент должен:

знать:

- основы истории развития физики микроявлений (эксперимента и теории);
 - основные положения и принципы квантовой механики;
- методы квантово-механического описания атомов, молекул и кристаллов;
 - физическое обоснование периодической системы элементов;
 - особенности теплового излучения человека;
- основные проявления квантовых закономерностей в процессах, происходящих в организме человека;
 - применение резонансных явлений в медицине;

уметь:

- применять теорию Бора для оценки основных параметров атомов;
- применять квантово-механический подход для объяснения атомно-молекулярных явлений и расчета характеристик атомов, молекул и кристаллов;
- связывать характеристики атомов и молекул с их оптическими и рентгеновскими спектрами;

иметь навык:

- пользоваться терминологией физики микроявлений;
- проводить экспериментальные исследования атомно-молекулярных явлений;
 - использовать математические методы решения задач атомной физики.

Учебная дисциплина изучается в 5-м семестре. В соответствии с учебным планом изучение дисциплины рассчитано на общее количество часов 210. Аудиторное количество часов 116, из них лекции -38 ч, практические занятия -30 ч, лабораторные занятия -48 ч.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет и экзамен.

Трудоемкость дисциплины составляет 5 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Введение

Основные этапы развития атомной и квантовой физики. Связь атомной физики с другими дисциплинами. Атомизм вещества и электричества. Ядерная модель атома. Масштабы расстояний, времен и энергий для атомномолекулярных и ядерных процессов. Специфика законов микромира. Принцип соответствия. Атомная физика как физика квантовых явлений на атомномолекулярном уровне.

2. Развитие квантовых представлений

Общие спектральные закономерности. Формула Бальмера, комбинационный принцип. Ядерная модель атома Резерфорда. Формула Резерфорда. Несостоятельность классической физики для объяснения свойств атома. Постулаты Бора о стационарных состояниях и частотах излучения при квантовых переходах. Уровни энергии и оптические спектры. Упругие и неупругие столкновения. Опыт Франка и Герца. Модели атома по Бору и по Бору—Зоммерфельду. Изотопический сдвиг уровней.

Корпускулярно-волновой дуализм вещества. Волны де Бройля. Эксперименты по дифракции микрочастиц (электронов, нейтронов, атомов, молекул). Роль измерения. Принцип дополнительности.

3. Основные положения квантовой механики

Состояние квантовой системы и волновая функция. Вероятностная интерпретация волновой функции. Принцип суперпозиции. Соответствие между физическими величинами и операторами. Физический смысл собственных функций и собственных значений. Операторы координаты, импульса и энергии. Временное уравнение Шредингера. Нестационарные и стационарные состояния. Уравнение Шредингера для стационарных состояний и квантование энергии.

Средние значения физических величин. Соотношения неопределенностей Гейзенберга. Законы сохранения в квантовой механике.

Одномерные задачи квантовой механики. Прямоугольная потенциальная яма. Линейный гармонический осциллятор. Потенциальные барьеры. Туннельный эффект и его проявления. Эффект Рамзауэра.

4. Механический и магнитный моменты атомных систем

Оператор момента импульса. Квантование проекций и квадрата момента импульса. Классификация состояний по моменту импульса. Векторная модель сложения моментов импульса.

Магнитный момент атомной системы, гиромагнитное отношение. Магнетон Бора. Прецессия моментов во внешнем магнитном поле. Опыт Штерна и Герлаха. Спин электрона и других микрочастиц. Полный момент атомной системы. Спин-орбитальное взаимодействие. Множитель Ланде.

Магнитный резонанс и методы его наблюдения (метод пучков Раби, ЭПР и ЯМР). Магнитно-резонансные измерения g-фактора. Понятие о магнитной томографии.

5. Излучение атомных систем

Интенсивности спектральных линий. Правила отбора и их связь с законами сохранения момента импульса и четности.

Время жизни возбужденных состояний. Естественная ширина уровня энергии и спектральной линии. Уширение линий из-за эффекта Доплера и столкновений.

6. Строение и свойства атомов

Атом водорода и водородоподобные системы. Квантовые числа для электрона в атоме. Уровни энергии и волновые функции. Распределение электронной плотности. Специфическое кулоновское вырождение. Тонкая структура уровней энергии и спектральных линий атома водорода. Формула Дирака. Лэмбовский сдвиг. Сверхтонкая структура.

Многоэлектронные атомы. Неразличимость одинаковых микрочастиц. Бозоны и фермионы. Принцип Паули. Учет взаимодействия электронов. Одноэлектронное приближение. Самосогласованное поле. Эффективная потенциальная энергия. Экранирование. Атомные орбитали, оболочки и слои. Общий характер зависимости энергии связи электрона в сложном атоме от квантовых чисел n и l. Состояние атома в целом. Электронная конфигурация. Последовательность заполнения электронных оболочек и слоев. Правила Хунда. Периодическая система элементов Менделеева.

Уровни энергии и спектры атомов щелочных металлов.

Рентгеновские уровни энергии и характеристические спектры. Закон Мозли. Эффект Оже. Поглощение рентгеновских лучей.

Отрицательные ионы. Сродство к электрону.

Атом в магнитном поле. Эффект Зеемана в слабых и сильных полях. Атом в электрическом поле. Эффект Штарка.

7. Строение и свойства молекул

Виды движений в молекуле. Адиабатическое приближение. Порядки величин электронной, колебательной и вращательной энергий. Квантовая природа химической связи в молекулах. Ионная и ковалентная связь.

Колебания и вращения двухатомных молекул. Вращательные колебательные и электронные спектры молекул. Комбинационное рассеяние.

8. Квантовые свойства твердых тел

Кристаллическая структура. Типы связей в кристаллах. Колебания решетки. Фононы. Основные представления зонной теории. Проводники, диэлектрики и полупроводники. Магнитные свойства твердых тел. Сверхпроводимость.

7 УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

	Название раздела, темы	Количество аудиторных часов					
Номер раздела, темы, занятия		Лекции	Практические (семинарские) занятия	Лабораторные занятия	Управляемая самостоятельная работа	Иное	Формы контроля знаний
1	2	3	4	5	6	7	8
1.	Введение	2				метод. пособие	опрос
2.	Развитие квантовых представлений	6	4	12		метод. пособие	1 – 7
3	Основные положения квантовой механики	6	6	12		метод. пособие	1 – 7
4.	Механический и магнитный моменты атомных систем	4	4			метод. пособие	1 – 7
5.	Излучение атомных систем	2	2	12		метод. пособие	1 – 7
6.	Строение и свойства атомов	8	6	12		метод. пособие	1 – 7
7.	Строение и свойства молекул	6	2			метод. пособие	1 – 7
8.	Квантовые свойства твердых тел	4	4			метод. пособие	1 – 7
	Контрольная работа		2			2.2.00	
всего:			30	48			

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Гершензон, Е. М. Оптика и атомная физика : учеб. пособие для ВУЗов / Е. М. Гершензон, Н. Н. Малов, А. Н. Мансуров. М. : Изд –й центр "Академия", 2000.-408 с.
- 2. Кузнецов, С. И. Физика : Оптика. Элементы атомной и ядерной физики. Элементарные частицы : учеб. пособие для ВУЗов / С. И. Кузнецов. М. : Юрайт, 2018. 301 с.
- 3. Луцевич, А. А. Оптика и квантовая физика : пособие / А. А. Луцевич, В. Ф. Малишевский; Мин –во образования РБ, УО "МГЭИ им. А. Д. Сахарова" БГУ. Минск : ИВЦ Минфина, 2022. 240 с.
- 4. Маскевич, С. А. Атомная физика: практикум по решению задач: учебное пособие / С. А. Маскевич. Минск: Вышэйшая школа, 2023. 327 с.
- 5. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 5 : Атомная и ядерная физика / Д. В. Сивухин. 3 —е изд., стер. М. : ФИЗМАТЛИТ , 2008. 784 с.

Дополнительная

- 6. Атомная физика. Теоретические основы и лабораторный практикум: учеб. пособие для студ. вузов / В. Е. Граков [и др.]; под науч. ред. А. Клищенко. Минск; Москва: Новое знание: ИНФРА-М, 2011. 333 с.
- 7. Будкер Д., Кимбелл Д., ДеМилль Д. Атомная физика. Освоение через задачи / Пер. с англ. под ред. Е. Б. Александрова. М.: ФИЗМАТЛИТ, 2010. 400 с.
- 8. Годлевская, А. Н. Физика атома и атомных явлений : учебное пособие / А. Н. Годлевская, В. Г. Шолох. Гомель : ГГУ имени Ф. Скорины, 2021. 307 с.
- 9. Григорьев, Ю. М. Физика атома и атомных явлений : учебное пособие / Ю. М. Григорьев, И. С. Кычкин. Москва : ФИЗМАТЛИТ, 2015. 368 с.
- 10. Докучаев, Я. П. Физика атома и атомных явлений. Физика атомного ядра и частиц: текст лекций / Я. П. Докучаев; Ярославский гос. ун-т им. П. Г. Демидова. Ярославль: ЯрГУ, 2006. 135 с.
- 11. Маскевич, С. А. Атомная физика: практикум по решению задач: учебное пособие / С. А. Маскевич. Минск: Вышэйшая школа, 2010. 455 с.
- 12. Маскевич, С. А. Атомная физика. Тестовые задания : учеб. пособие для студ. / С. А. Маскевич. Гродно : ГрГУ, 2006. 238 с.
- 13. Савельев, И. В. Курс общей физики : учебное пособие: в 5 томах / И. В. Савельев. 5-е изд. Санкт-Петербург : Лань, 2021 Том 5: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц 2021. 384 с.

Рекомендуемые формы контроля знаний

С целью диагностики знаний, умений и навыков студентов по данной дисциплине рекомендуется использовать:

- 1) индивидуальные задания;
- 2) контрольные работы;
- 3) самостоятельные работы;
- 4) коллоквиумы по пройденному теоретическому материалу;
- 5) устный опрос в ходе практических и лабораторных занятий;
- 6) проверку конспектов лекций студентов;
- 7) тестирование, включая компьютерное.

Инновационные методы и подходы к изучению дисциплины

При изучении дисциплины рекомендуется использовать практикоориентированный подход, который предполагает: освоение содержания образования через решения практических задач; приобретение навыков эффективного выполнения разных видов профессиональной деятельности; ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры; использование процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, практические занятия, лабораторные занятия и самостоятельная работа студента.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

В процессе проведения практических заданий используются дидактические материалы, включающие задачи повышенной сложности. Использование дидактических материалов позволяет работать хорошо успевающим студентам с большим коэффициентом полезного действия.

Изучение дисциплины предусматривает систематическую самостоятельную работу студентов с рекомендуемыми учебнометодическими материалами, Internet-источниками и другими источниками.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Самостоятельная работа осуществляется в виде аудиторных и внеаудиторных форм. Для самостоятельной работы студентам предлагаются индивидуальные домашние задания. В рамках индивидуальных консультаций студенты обсуждают ход выполнения индивидуальных домашних заданий.

Темы самостоятельных работ

- 1. Понятие о магнитной томографии.
- 2. Время жизни возбужденных состояний. Естественная ширина уровня энергии и спектральной линии. Уширение линий из-за эффекта Доплера и столкновений.
- 3. Периодическая система элементов Менделеева.
- 4. Атом в электрическом поле. Эффект Штарка.
- 5. Комбинационное рассеяние.
- 6. Магнитные свойства твердых тел.
- 7. Сверхпроводимость.

Рекомендуемые темы практических занятий

- 1. Постулаты Бора и боровская модель атома.
- 2. Волны де Бройля. Соотношения неопределенностей.
- 3. Основные положения и простейшие задачи квантовой механики.
- 4. Атом водорода. Тонкая структура уровней и спектральных линий.
- 5. Многоэлектронные атомы: слои и оболочки, векторная модель, оптические и рентгеновские спектры.
- 6. Атом в магнитном поле.
- 7. Свойства двухатомных молекул.
- 8. Квантовые свойства кристаллов.

Рекомендуемые темы работ лабораторных занятий

- 1. Изучение спектра атома водорода.
- 2. Изотопический сдвиг в спектре атомарного водорода.
- 3. Дифракция электронов в кристаллических структурах.
- 4. Квантование энергии и волновые функции электрона в атоме водорода.
- 5. Стационарные состояния электрона в одномерных потенциальных ямах.
- 6. Тормозное рентгеновское излучение.
- 7. Характеристические рентгеновские спектры.
- 8. Эффект Рамзауэра.
- 9. Колебательные состояния двухатомной молекулы.
- 10. Изучение спектров.
- 11. Опыт Штерна и Герлаха.

Рекомендуемые темы коллоквиумов

- 1. Интерференция, дифракция и поляризация света.
- 2. Применение оптических явлений в медицине.

Протокол согласования учебной программы

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			