Q37 H

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А. Д. Сахарова БГУ

Ô.И. Родькин

ungue 2025

Регистрационный № УД-1444-25 /уч.

ТЕРМОДИНАМИКА И СТАТИСТИЧЕСКАЯ ФИЗИКА

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛЬ:

Н. А. Савастенко, заведующий кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» БГУ, доктор физикоматематических наук, доцент

РЕЦЕНЗЕНТЫ:

Н.Д. Стрекаль, профессор кафедры общей физики учреждения образования «Гродненский государственный университет им. Янки Купалы», доктор физико-математических наук, профессор;

В.А. Иванюкович, доцент кафедры информационный технологий в экологии и медицине учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 11 от 20 июми 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол N_{\odot} от 25 июля 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины — формирование устойчивых теоретических знаний, основанных на современном представлении об основных методах статистического и термодинамического описания свойств равновесных и неравновесных макроскопических систем, состоящих из большого числа частиц и умение применять их для решения практических задач.

Задачи учебной дисциплины:

- 1) знать основы классической статистической физики равновесных систем;
- 2) владеть термодинамическим (феноменологическим) описанием равновесного состояния макроскопических систем и квазистатических процессов;
- 3) знать свойства необратимых процессов приближения к термодинамическому равновесию;
- 4) знать условия равновесия и устойчивости термодинамических систем;
 - 5) знать характеристики флуктуаций в равновесных системах;
 - 6) освоить основы квантовой статистики.

«Термодинамика и статистическая физика», являясь частью курса теоретической физики, тесно связана с остальными ее разделами. Учебная дисциплина «Термодинамика и статистическая физика» предполагает предварительное изучение дисциплин «Математический анализ», «Теория вероятностей и математическая статистика», «Механика», «Молекулярная физика», «Физика атома и атомных явлений», «Теоретическая механика», «Основы квантовой механики».

Воспитательное значение учебной дисциплины «Термодинамика и статистическая физика» заключается в формировании у обучающихся научного мировоззрения, основанного на понимании фундаментальных законов природы; развитии умений анализировать сложные системы и процессы, применять статистические методы для решения практических задач, а также креативности при моделировании физических явлений.

Изучение данной дисциплины способствует развитию познавательной активности: самостоятельности, критического мышления, ответственности и точности в исследовательской работе. Она формирует способности к саморазвитию и профессиональному росту, стимулирует интерес к научным открытиям и инновационным технологиям.

Кроме того, освоение термодинамики и статистической физики создаёт условия для воспитания интеллектуально развитой личности, обладающей стремлением к глубокому пониманию окружающего мира, готовностью к решению глобальных научных и инженерных задач, а также гражданской ответственностью и патриотизмом, проявляющимися в стремлении внести вклад в развитие науки и технологий своей страны.

При освоении учебной дисциплины обучающийся должен овладеть следующими специализированными компетенциями: Применять статистический и термодинамический подходы к описанию классических и

квантовых систем, описывать идеальные и неидеальные газы с использованием статистик Больцмана, Ферми и Бозе, выполнять расчеты термодинамических процессов и фазовых переходов, анализировать неравновесные процессы для решения задач экспериментального и теоретического исследования.

В результате изучения учебной дисциплины студент должен знать:

- основы истории развития физики микроявлений (эксперимента и теории);
 - основные законы и методы термодинамики;
 - основные принципы статистической механики;
 - микроканонические и канонические распределения;

уметь:

- обосновывать законы термодинамики методами статистической физики;
- решать практически важные задачи термодинамики;

иметь навык:

- оперировать терминологией термодинамики и статистической физики;
- пользоваться математическими методами решения задач термодинамики и статистической физики.

В соответствии с учебным планом изучение дисциплины рассчитано на общее количество часов — 180. Аудиторное количество часов — 94, из них: лекции — 34 часа, практические занятия — 60 часов.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет и экзамен в VI семестре.

Трудоемкость дисциплины составляет 5 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Введение. Основные принципы статистической физики

и методы статистической физики. Основные понятия статистической физики. Фазовое пространство. Понятие ансамбля. Статистическое распределение. Статистическая независимость. Теорема Лиувилля. Роль энергии. Статистическая матрица. Статистическое распределение в квантовой статитстике. Энтропия. Закон возрастания энтропии.

2. Основные понятия и исходные положения термодинамики

Термодинамика. Предмет термодинамики. Термодинамика и статистика. Термодинамические системы, параметры и равновесие. Гомогенные и гетерогенные фазы и компоненты. Понятия «тело» и «фаза» в термодинамике. Равновесные и неравновесные процессы. Основные результаты термодинамического подхода.

3. Термодинамические величины

Температура. Макроскопическое движение. Адиабатический процесс. Давление. Работа и количество тепла. Тепловая функция. Свободная энергия и термодинамический потенциал. Соотношения между производными термодинамических величин. Термодинамическая шкала температур. Процесс Джоуля—Томсона. Максимальная работа. Максимальная работа, производимая телом, находящимся во внешней среде.

4. Основные законы и уравнения термодинамики. Первое начало термодинамики

Уравнение первого начала термодинамики. Теплоемкости и теплоты изотермического изменения внешних параметров. Основные термодинамические процессы и их уравнения.

5. Второе начало термодинамики

Общая характеристика и исходная формулировка второго начала термодинамики. Обратимые и необратимые процессы. Принцип адиабатной недостижимости и второе начало для равновесных процессов. Энтропия и термодинамическая температура. Основное уравнение термодинамики для равновесных процессов. Связь между термическими и калорическими уравнениями состояния. Вычисление энтропии. Парадокс Гиббса. Второе начало термодинамики для неравновесных процессов. Основное уравнение и основное неравенство термодинамики. Цикл Карно и теоремы Карно. Самопроизвольный переход теплоты. Пределы применимости второго начала термодинамики. Направление времени.

6. Третье начало термодинамики

Теорема Нернста. Формулировка третьего начала термодинамики. Некоторые следствия третьего начала термодинамики.

7. Каноническое распределение Гиббса

Зависимость термодинамических величин от числа частиц. Равновесие тела во внешнем поле. Каноническое распределение Гиббса. Распределение Максвелла. Распределение вероятностей для осциллятора. Свободная энергия в распределении Гиббса. Вывод термодинамических соотношений из распределения Гиббса. Распределение Гиббса с переменным числом частиц.

8. Идеальный газ

Распределение Больцмана в квантовом случае. Распределение Больцмана в классической статистике. Свободная энергия и уравнение состояния идеального газа. Идеальный газ с постоянной теплоёмкостью. Закон равнораспределения. Одноатомный идеальный газ, влияние электронного момента. Двухатомный газ. Вращение молекул. Колебания атомов.

9. Распределения Ферми и Бозе

Принцип тождественности одинаковых частиц. Распределение Ферми. Распределение Бозе. Ферми- и Бозе-газы элементарных частиц. Вырожденный электронный газ. Вырожденный Бозе-газ. Конденсация Бозе-Эйнштейна. Излучение абсолютно чёрного тела.

10. Теория флуктуаций

Распределение Гаусса. Флуктуации основных термодинамических величин. Флуктуации в идеальном газе. Формула Пуассона. Обобщенная восприимчивость. Дисперсионные соотношения Крамерса–Кронига. Флуктуационно–диссипационная теорема.

11. Фазовые переходы

Условия равновесия фаз. Критическая точка. Фазовые переходы первого и вторго рода.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

13		Количество аудиторных часов				
Номер раздела, темы, занятия	Название раздела, темы	Лекции	Практические (семинарские) занятия	Управляемая самостоятельная работа	Иное	Формы контроля знаний
1	2	3	4	6	7	8
1.	Введение. Основные принципы статистической физики	2	8		метод. пособие	1 – 6
2.	Основные понятия и исходные положения термодинамики	2			метод. пособие	1 – 6
3.	Термодинамические величины	4	18		метод. пособие	1 – 6
4.	Основные законы и уравнения термодинамики. Первое начало термодинамики	2			метод. пособие	1 – 6
5.	Второе начало термодинамики	2			метод. пособие	1 – 6
6.	Третье начало термодинамики	2			метод. пособие	1 – 6
7.	Каноническое распределение Гиббса	8			метод. пособие	1 – 6
	Контрольная работа №1		2			
8.	Идеальный газ	2	16		метод. пособие	1 – 6
9.	Распределения Ферми и Бозе	6			метод. пособие	1 – 6
10.	Теория флуктуаций	2	14		метод. пособие	1 – 6
11.	Фазовые переходы	2			метод. пособие	1 – 6
	Контрольная работа № 2		2			
всего:		34	60			

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Байков, В. И. Теплофизика. Термодинамика и статистическая физика: учеб. пособие / В. И. Байков, Н. В. Павлюкевич. Минск: Выш. шк., 2018. 447 с.
- 2. Ландау, Л. Д. Теоретическая физика: учеб. пособие: в 10 т. Т. 5, Ч. 1: Статистическая физика / Л. Д. Ландау, Е. М. Лифшиц; под ред. Л. П. Питаевского. Изд. 5 –е, стер. М.: ФИЗМАТЛИТ, 2010. 616 с.
- 3. Ландау, Л. Д. Теоретическая физика: учеб. пособие: в 10 т. Т. 9, ч. 2: Статистическая физика. Теория конденсированного состояния / Л. Д. Ландау, Е. М. Лифшиц, Л. П. Питаевский; под ред. Л. П. Питаевского. Изд. 4 е, стер. М.: ФИЗМАТЛИТ, 2004. 496 с.

Дополнительная

- 4. Ансельм, А. И. Основы статистической физики и термодинамики : учебное пособие для вузов / А. И. Ансельм. 3-е изд., стер. Санкт-Петербург: Лань, 2025. 428 с.
- 5. Базаров, И. П. Задачи по термодинамике и статитсической физике / И. П. Базаров, Э. В. Геворкян, П. Н. Николаев, М.: URSS, 2020. 352 с.
- 6. Бурдаков, В. П. Термодинамика: учебное пособие для вузов. В 2 ч. Ч. 1. Основной курс / В. П. Бурдаков, Б. В. Дзюбенко, С. Ю. Меснянкин. М.: Дрофа, 2009. 480 с.
- 7. Бурдаков, В. П. Термодинамика: учебное пособие для вузов. В 2 ч. Ч. 2. Специальный курс / В. П. Бурдаков, Б. В. Дзюбенко, С. Ю. Меснянкин, Т. В. Михайлова. М.: Дрофа, 2009. 361 с.
- 8. Квасников, И. А. Термодинамика и статистическая физика : Теория равновесных систем : Термодинамика Т. 1. / И. А. Квасников. М. : URSS, $2021.-328~\rm c.$
- 9. Квасников, И. А. Термодинамика и статистическая физика: Теория равновесных систем: Термодинамика Т. 2. / И. А. Квасников. М.: URSS, 2021. 584 с.
- 10. Квасников, И. А. Термодинамика и статистическая физика. Т. 3: Теория неравновесных систем / И. А. Квасников. М.: URSS, 2021. 542 с.
- 11. Климонтович, Ю. Л. Статистическая физика / Ю. Л. Климонтович. М. : URSS, $2021.-608~\mathrm{c}.$
- 12. Кондратьев, А. С. Задачи по термодинамике, статитсической физике и кинетической теории / А. С. Кондратьев. М.: Физматлит, 2017. 256 с.
- 13. Сапожников, С. 3. Введение в термодинамику: учебное пособие для вузов / С. 3. Сапожников. Санкт-Петербург: Лань, 2025. 120 с.
- 14. Саранин, В. А. Статистическая физика и термодинамика: учебное пособие / В. А. Саранин. Глазов: ГИПУ им. В.Г. Короленко, 2006. 60 с.

- 15. Семенов, В. К. Статистическая физика и стохастические процессы: учебное пособие / В. К. Семенов. 2-е перераб. и доп. Иваново: ИГЭУ, 2019. 72 с.
- 16. Термодинамика и классическая статистическая физика : учебное пособие / А. Н. Алмалиев, И. В. Копытни, С. И. Мармо, А. Ч. Воронеж : ВГУ, 2015.-70 с.
- 17. Шкаровский, И. Кинетика частиц плазмы / И. Шкаровский, Т. Джонстон, М. Бачинский. М.: Атомиздат, 2009. 396 с.

Перечень рекомендуемых средств диагностики

С целью диагностики знаний, умений и навыков студентов по данной дисциплине рекомендуется использовать:

- 1. контрольные работы;
- 2. самостоятельные работы;
- 3. тесты;
- 4. коллоквиумы по пройденному теоретическому материалу;
- 5. устный опрос в ходе практических занятий;
- 6. проверку конспектов лекций студентов.

Инновационные подходы и методы в преподавании учебной дисциплины

При организации образовательного процесса используется *метод анализа* конкретных ситуаций (кейс-метод), который предполагает:

- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, практические занятия и самостоятельная работа студента.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

В процессе проведения практических заданий используются дидактические материалы, включающие задачи повышенной сложности. Использование дидактических материалов позволяет работать хорошо успевающим студентам с большим коэффициентом полезного действия.

Изучение дисциплины предусматривает систематическую самостоятельную работу студентов с рекомендуемыми учебнометодическими материалами, Internet-источниками и другими источниками.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного

опроса, коллоквиумов, контрольных работ по темам и разделам курса (модуля).

Перечень тем практических занятий

- 1. Введение. Основные принципы статистической физики.
- 2. Термодинамические величины.
- 3. Идеальный газ.
- 4. Теория флуктуаций.

Примерный перечень тем управляемой самостоятельной работы

- 1. Пределы применимости второго начала термодинамики.
- 2. Излучение абсолютно черного тела.
- 3. Свойства сильно разреженных газов.

Рекомендуемые темы коллоквиумов

- 1. Основные положения термодинамики.
- 2. Каноническое распределение Гиббса.
- 3. Распределение Ферми и Бозе.
- 4. Теория флуктуаций.

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с			
другими			
дисциплинами не			
требуется			