Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А. Д Сахарова БГУ

ображения болькин больки б

<u> 25 у Мисия</u> 2025 г.

Регистрационный № УД-1749-25 /уч.

РАДИОНУКЛИДНАЯ ДИАГНОСТИКА И ТЕРАПИЯ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛЬ:

Е. В. Емельяненко, доцент кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» БГУ, кандидат технических наук

РЕЦЕНЗЕНТЫ:

М.Н. Петкевич, начальник отдела по инженерному обеспечению лучевой терапии ГУ «Республиканский научно-практический центр онкологии и медицинской радиологии имени Н.Н. Александрова», магистр по медицинской физике;

С. Е. Головатый, заведующий кафедрой экологического мониторинга и менеджмента учреждения образования «Международный государственный экологический институт имени А. Д. Сахарова» Белорусского государственного университета, доктор сельскохозяйственных наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета (протокол N_2 от M_1 от M_2 M_3 M_4 от M_4 M_4

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета (протокол N_2 от 25 сиону 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины: формирование у студентов современных научных знаний и представлений о физико-технических и физико-математических аспектах ядерной медицины, методах радионуклидной диагностики.

Задачи учебной дисциплины:

- обеспечение необходимого уровня знаний, необходимого для решения широкого круга научно-технических, диагностических и терапевтических задач в медицинской физике;
- изучение вопросов взаимодействия ионизирующего излучения с веществом, радиационной защиты и дозиметрии, использования ионизирующих излучений в медицисовременных радиофармпрепаратов для ядерной медицины,
- изучение современных методов радионуклидной визуализации, а также современных аппаратных средств.

«Радионуклидная диагностика и терапия» является дисциплиной модуля компонента «Ядерная государственного медицина» наряду с учебной дисциплиной «Радиофармацевтические препараты». Предполагает предварительное изучение дисциплин «Физика ядра и ионизирующего излучения», «Физика атома и: атомных явлений», «Биофизика неионизирующего излучения», «Основы квантовой механики» и др.

«Радионуклидная диагностика и терапия» Дисциплина информацию о применении радионуклидных методов исследования клинической медицине. Радионуклидная диагностика – один из видов лучевой диагностики, основанный на внешней радиометрии излучения, исходящего из органов и тканей введения радиофармацевтических препаратов после непосредственно организм пациента. Это метод функциональной визуализации, позволяющий качественно и количественно оценить наличие функционирующей ткани в исследуемом органе. Радионуклидная диагностика основана на дистанционной радиометрии И использовании радиофармпрепаратов, отличительная черта которых способность накапливаться и распределяться в исследуемом органе в зависимости от наличия функционирующей ткани и отражать динамику протекающих в органе процессов.

Воспитательное значение учебной дисциплины «Радионуклидная диагностика и терапия» заключается в формировании у студентов профессиональной культуры и научного подхода к медицинской практике; развитии навыков диагностики, анализа и принятия решений, необходимых для эффективного лечения пациентов; воспитании внимательности, точности и ответственности при работе с радионуклидами и современным медицинским оборудованием.

Изучение данной дисциплины способствует развитию познавательной активности, творческой инициативы и самостоятельности в освоении инновационных методов диагностики и терапии. Она формирует у будущих специалистов способности к саморазвитию и непрерывному

профессиональному совершенствованию, что особенно важно в условиях стремительного развития ядерной медицины. Кроме того, дисциплина воспитывает у студентов гражданскую ответственность, осознание значимости своей работы для здоровья населения и развития медицинской науки, а также способствует формированию патриотизма через вклад в улучшение системы здравоохранения страны.

При изучении учебной дисциплины студент должен овладеть следующими универсальными и базовыми профессиональными компетенциями:

- владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации;
- использовать методики радионуклидной диагностики и терапии для оценки доз облучения пациента и персонала при решении профессиональных задач.

В результате изучения дисциплины «Радионуклидная диагностика и терапия», студент должен

знать:

- характеристики основных радионуклидов, применяемых в радионуклидной диагностики;
- принципы получения томографических данных в позитронно эмиссионной томографии (ПЭТ) и однофотонной эмиссионной томографии;
- структуру и назначении отдельных элементов ПЭТ и ОФЭКТ-систем;
- устройство гамма-камеры;
- радиофармпрепараты, применяемые в ядерной медицине;
- методы снижения радиационной нагрузки на пациентов;
 уметь:
- пользоваться приемами по снижению дозовых нагрузок на персонал;
- анализировать физико-технические данные ПЭТ и ОФЭКТ ориентироваться в методах реконструкции ПЭТ и ОФЭКТ изображений;

иметь навык:

- владеть методами обработки результатов экспериментальных исследований;
- использовать современные научные знания в областях, связанных с реализацией профессиональной деятельности;
 - владеть методами введения поправок в ПЭТ и ОФЭКТ;
 - реконструкции ПЭТ и ОФЭКТ-изображений;
 - тестирования ПЭТ-сканеров.

Учебная дисциплина изучается в 6-м семестре. В соответствии с учебным планом изучение дисциплины рассчитано на общее количество часов 108. Аудиторное количество часов 54, из них лекции — 36 ч, практические занятия — 18 ч.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – экзамен.

Трудоемкость дисциплины составляет 3 зачетные единицы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Tema 1. Радионуклидная диагностика в клинической практике. Невизуализирующие радионуклидные исследования

Классификация излучений. Строение атома и ядра. Характеристика поля излучений. Взаимодействие излучений с веществом. Биологическое действие излучений.

Тема 2. Радионуклидная терапия

Основы радионуклидной терапии. Препараты для радионуклидной терапии. Клинические показания и показательные случаи. Выбор радиофармпрепарата. Методы контроля эффективности терапии.

Тема 3. Однофотонная эмиссионная компьютерная томография (ОФЭКТ)

Применение планарных изображений для количественного определения активности. Системы однофотонной эмиссионной томографии на базе гаммакамер. Разрешение и чувствительность. Коллиматоры. Корректировка ослабления. Реконструкция изображений. Гибридные системы ОФЭКТ/КТ. Контроль качества ОФЭКТ/КТ.

Тема 4. Позитронно-эмиссионная томография

Детекторы для ПЭТ. Детектирование совпадений. ПЭТ-сканер. Пространственное разрешение. КТ визуализация. Коррекция данных ПЭТ. Накопление данных в ПЭТ. Реконструкция изображений в позитронно-эмиссионной томографии. Количественный анализ данных в ПЭТ. Контроль качества ПЭТ/КТ. Фантомы для контроля качества ПЭТ.

Тема 5. Тераностика

Фармацевтические композиции. Клинические протоколы. Нейро- и кардиотераностика.

Тема 6. Компьютерная рентгеновская томография.

Технические особенности компьютерного рентгеновского томографа. Получение КТ изображений. Структура протокола сканирования. Контроль качества КТ.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(очная (дневная) форма получения высшего образования)

(очная (дневная) форма получения высшего образования)							
		Количество аудиторных часов					
Номер раздела, темы, занятия	Название раздела, темы	Лекции	Практические (семинарские) занятия	Лабораторные занятия	Иное	Формы контроля знаний	
1	2	3	4	5	6	7	
1	Радионуклидная диагностика в клинической практике. Невизуализирующие радионуклидные исследования	6	3		метод. пособие	1 – 5	
2	Радионуклидная терапия	6	3		метод. пособие	1 – 5	
3	Однофотонная эмиссионная компьютерная (ОФЭКТ)	6	3		метод. пособие	1 – 5	
4	Позитронно-эмиссионная томография	6	3		метод. пособие	1 – 5	
5	Тераностика	6	3		метод. пособие	1 – 5	
6	Компьютерная рентгеновская томография	6	3		метод. пособие	1 – 5	
	ВСЕГО	36	18				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Климанов, В. А. Ядерная медицина. Радионуклидная диагностика : учеб. пособие / В. А. Климанов. 2—е изд., испр. и доп. М. : Юрайт, 2018. 307 с.
- 2. Королюк, И. П.Лучевая диагностика: учебник / И. П. Королюк, Л. Д. Линденбратен. 3—е изд., перераб. и доп. М.: БИНОМ, 2013. 496 с.
- 3. Лучевая диагностика и лучевая терапия : учеб. пособие / А. И. Алешкевич, В. В. Рожковская, И. И. Сергеева [и др.]. Минск : Новое знание, 2017. 382 с.
- 4. Лучевая терапия (радиотерапия) : учебник / Г. Е. Труфанов, М. А. Асатурян, Г. М. Жаринов [и др.] ; под ред. Г. Е. Труфанова. 3—е изд. перераб. и доп. М. : ГЭОТАР—Медиа, 2018.-208 с.
- 5. Романцова, И. В.Сборник задач по дозиметрии и защите от ионизирующих излучений : учебное пособие / И. В. Романцова, В. В. Ткаченко, В. А. Кутьков ; Мин–во науки и высшего образования РФ, Нац. исследовательский ядерный ун–т "МИФИ". 3–е изд., доп. и перераб. Москва : НИЯУ МИФИ, 2022. 208 с.

Дополнительная

- 6. Анохин, Ю. Н. Применение ядерных и радиационных технологий в медицине : учебник / Ю. Н. Анохин. Москва : ИНФРА-М, 2024.-233 с.
- 7. Бажукова, И. Н. Технологии ядерной медицины : учеб. пособие / И. Н. Бажукова, С. И. Бажуков, А. А. Баранова ; М-во науки и высш. Обр. РФ. Екатеринбург : Изд-во Урал. Ун-та, 2022. 104 с.
- 8. Бекман, И. Н. Ядерная медицина: физические и химические основы : учебник для бакалавриата и магистратуры / И. Н. Бекман . 2-е изд., испр. и дол. М. : Юрайт , 2018. 400 с.
- 9. Костылев, В. А. Радиационная безопасность в медицине / В. А. Костылев, Б. Я. Наркевич. М.: Изд. Тровант, 2014. 202 с.
- 10. Лишманов, Ю. Б. Радионуклидная диагностика для практических врачей / Ю. Б. Лишманов, В. И. Чернов. Томск : Изд. STT, 2016. 394 с.
- 11. Наркевич, Б. Я. Физические основы ядерной медицины: учеб. пособие / Б. Я. Наркевич, В. А. Костылев. М.: АМФ-Пресс, 2002. 60 с.
- 12. Основы радионуклидной диагностики : учебно-методическое пособие / С. Л. Качур [и др.]. Минск : БГМУ, 2019. 39 с.
- 13. Черняев, А. П. Ядерно-физические методы в медицине : учеб. пособие / А. П. Черняев. М. : КДУ : Унив. кн., 2016. 192 с.

Перечень рекомендуемых средств диагностики

Для текущего контроля и самоконтроля знаний и умений студентов рекомендуется использовать:

- 1) проверку конспектов лекций студентов;
- 2) устные опросы;
- 3) письменные работы или тесты по отдельным темам курса;
- 4) коллоквиумы по пройденному теоретическому материалу;
- 5) защиту подготовленного студентом сообщения или реферата.

Инновационные методы и подходы к преподаванию дисциплины

При организации образовательного процесса используется:

метод анализа конкретных ситуаций (кейс-метод), который предполагает:

- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники.

метод проектного обучения, который предполагает:

- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

метод учебной дискуссии который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, семинарские занятия, самостоятельная работа студентов.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

На практических занятиях студенты знакомятся с методами проведения радионуклидных исследований, осваивают практические навыки работы с диагностическим оборудованием, учатся интерпретировать полученные данные и планировать тактику лечения.

Самостоятельная работа студентов может быть направлена на изучение научных статей, подготовку сообщений и рефератов, подготовку материалов, научных докладов, научно-исследовательских работ для участия в научно-практических конференциях, конкурсах.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Качество самостоятельной работы студентов целесообразно проверять в ходе текущего промежуточного и итогового контроля в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам дисциплины (модулям).

Рекомендуемые темы самостоятельных работ:

- 1. Анализ клинического случая применения радионуклидной терапии.
- 2. Сравнительная характеристика ОФЭКТ и ПЭТ.
- 3. Расчёт доз облучения для пациентов и персонала.
- 4. Обзор современных радиофармпрепаратов.
- 5. Подготовка презентации по теме "Тераностика в неврологии".
- 6. Разработка протокола контроля качества для гамма-камеры.

Рекомендуемые темы коллоквиумов:

- 1. Основные принципы радионуклидной диагностики и терапии.
- 2. Методы визуализации в ядерной медицине: ОФЭКТ и ПЭТ.
- 3. Радиационная защита и дозиметрия в медицинской практике.
- 4. Тераностика: интеграция диагностики и терапии.
- 5. Контроль качества в радионуклидной диагностике.

Рекомендуемые темы рефератов:

- 1. История развития радионуклидной диагностики и терапии.
- 2. Физические основы позитронно-эмиссионной томографии.
- 3. Применение радионуклидных методов в кардиологии.
- 4. Радиационная безопасность при работе с радиофармпрепаратами.
- 5. Гибридные системы визуализации: ОФЭКТ/КТ и ПЭТ/КТ.
- 6. Этические вопросы в ядерной медицине.
- 7. Инновационные радиофармпрепараты для онкологии.
- 8. Методы реконструкции изображений в ОФЭКТ и ПЭТ.
- 9. Роль медицинского физика в радионуклидной диагностике.
- 10. Будущее ядерной медицины: нанотехнологии и искусственный интеллект.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			