\$35 h

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А. Д. Сахарова БГУ

🦠 О.И. Родькин

(25 %/woles 2025

Регистрационный № УД- 1442-25 /уч.

ОСНОВЫ КВАНТОВОЙ МЕХАНИКИ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения высшего образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛЬ:

О.М. Бояркин, профессор кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова БГУ», доктор физико-математических наук, профессор

РЕЦЕНЗЕНТЫ:

В.В. Махнач, доцент кафедры физико-математических дисциплин Института информационных технологий Белорусского государственного университета информатики и радиоэлектроники, кандидат физико-математических наук, доцент;

В.А. Иванюкович, доцент кафедры информационный технологий в экологии и медицине учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета (протокол № 11 от 20 иновые 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета (протокол $N_{\underline{9}}$ от <u>25 июня</u> 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины – познакомить студентов с фундаментальными принципами и законами квантовой механики, сформировать у них целостное представление о современной физической картине мира, а также научить применять теоретические знания для анализа и решения конкретных физических задач, связанных с микромиром.

Задачи учебной дисциплины:

- 1) ознакомить студентов с математическим аппаратом квантовой механики, включая операторы, собственные значения и функции, а также основы вероятностной интерпретации волновых функций;
- 2) дать представление о методах описания квантово-механических систем, включая точные и приближенные решения уравнения Шредингера;
- 3) научить студентов решать типовые задачи квантовой механики, такие как движение частицы в потенциальных ямах, гармонический осциллятор, атом водорода, а также применять соотношения неопределенностей;
- 4) систематически изложить основные принципы и законы физики микромира, включая квантование энергии, туннельный эффект и теорию возмущений;
- 5) способствовать развитию научного мировоззрения, аналитических способностей и навыков самостоятельной исследовательской работы;
- 6) подготовить студентов к применению полученных знаний в профессиональной деятельности, включая решение прикладных задач в области медицинской физики и других высокотехнологичных отраслей.

Курс «Основы квантовой механики» играет основную роль в формирования целостных представлений о современной физической природе мира. Содержание этого раздела физики составляет формулировка общих законов природы, объяснение конкретных явлений на основе этих законов и предсказание новых явлений.

Изучение квантовой физики должно сопровождаться физическими примерами, объясняющими общетеоретические положения. С необходимой точностью следует рассмотреть вопросы, связанные с теми или иными предположениями и ограничениями в теории, с постановкой задачи и интерпретацией результатов, выяснением области применимости разработанных методов C возможными обобщениями Нерелятивистская квантовая механика формирует у студентов представление о атомно-молекулярном Для вещества на уровне. математическим аппаратом квантовой механики, студенты должны научиться получать точные и приближенные решения уравнения Шредингера. Изложение приближенных методов вычислений следует сопровождать конкретными примерами и сравнением теоретических и экспериментальных результатов. Знание современной техники эксперимента позволит студенту иметь ясное представление о границах применимости существующей теории микромира.

Учебная дисциплина относится к модулю «Теоретическая физика-2» наряду с дисциплиной «Термодинамика и статистическая физика» компонента учреждения образования. Предполагает предварительное изучение дисциплин «Математический анализ», «Аналитическая геометрия и линейная алгебра», «Основы векторного и тензорного анализа», «Механика», «Оптика» и др. Изучение дисциплины «Основы квантовой механики» необходимо для дальнейшего освоения дисциплин модулей «Ядерная медицина», «Радиология» и др.

Воспитательное значение учебной дисциплины «Основы квантовой механики» заключается в формировании у студентов физико-математической мировоззрения; И' современного научного культуры исследовательских аналитических способностей, креативности, умений, необходимых для решения фундаментальных и прикладных задач квантовой физики; развитии познавательных способностей и активности: творческой самостоятельности, ответственности И организованности; формировании способностей к саморазвитию, самосовершенствованию и самореализации.

Изучение данной учебной дисциплины способствует созданию условий для формирования интеллектуально развитой личности студента, которой присущи стремление к профессиональному совершенствованию, активному участию в развитии наукоёмких технологий и высокотехнологичных отраслей экономики страны, гражданская ответственность и патриотизм.

При изучении учебной дисциплины студент должен овладеть следующими, специализированными компетенциями: Использовать методологию Шредингера, Гейзенберга и Дирака для определения векторов состояния, исследуемых квантово-механических систем, рассчитывать энергетические спектры систем для решения профессиональных задач.

В результате усвоения дисциплины студент должен:

знать:

- основные законы физики микромира;
- методы описания квантово-механических систем; точные решения уравнения Шредингера для простейших потенциалов;
- основные методы приближенных решений уравнения Шредингера; модели, применяемые в квантовой физике для решения важнейших прикладных задач;
- структуру, тенденции развития и использования достижений современной физики микромира;

уметь: '

- вычислять коммутаторы операторов важнейших физических величин, находить собственные функции и собственные значения этих операторов в простейших случаях;
- решать уравнение Шредингера в простейших случаях одномерных задач и при движении частицы в центрально-симметричном потенциальном поле;

- применять соотношения неопределенностей физических величин, решения задач на собственные значения и собственные функции операторов этих величин, решения других типовых задач квантовой механики к оценке параметров, описывающих поведение более сложных квантовых систем;
 - вычислять величины поперечных сечений взаимодействия

иметь навык:

- пользоваться математическим аппаратом квантовой механики;
- пользоваться основами представления о структуре материи;
- оперировать фундаментальными принципами построения физики микромира.

В соответствии с учебным планом изучение дисциплины рассчитано на общее количество часов 180. Аудиторное количество часов 94, из них лекции — 64 ч, практические занятия — 30 ч.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – экзамен в 5 семестре.

Трудоемкость дисциплины составляет 5 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Введение

Эксперименты, подтверждающие ограниченность классических представлений. Гипотеза де-Бройля. Корпускулярно — волновой дуализм. Пакет волн де-Бройля. Соотношения неопределенностей Гейзенберга. Волновая функция и ее вероятностная интерпретация.

2. Математический аппарат квантовой механики

Алгебра операторов. Линейные и эрмитовские операторы. Собственные значения и собственные функции операторов. Скалярное произведение волновых функций. Дельта функция Дирака. Нормировка собственных функций линейных эрмитовских операторов в случае дискретного и непрерывного спектра. Аксиомы нерелятивистской квантовой механики. Понятие измерения в квантовой механике. Условие одновременной и точной измеримости физических величин. Физический смысл волновой функции в L-представлении. Понятие о полном наборе взаимно коммутирующих операторв. Средние значения физических величин. Соотношения неопределеностей для физических величин, операторы которых не коммутируют.

Нестационарное и стационарное уравнения Шредингера. Стационарные состояния. Уравнение непрерывности в нерелятивистской квантовой механике. Закон сохранения числа частиц. Производная от оператора по времени. Квантовые скобки Пуассона. Теорема Нетер. Законы сохранения физических величин в квантовой механике. Принцип соответствия. Теоремы Эренфеста.

3. Точно решаемые задачи квантовой механики

Частица в одномерной прямоугольной потенциальной яме. Одномерный линейный гармонический осциллятор. Водородоподобный атом. Разделение переменных в уравнении Шредингера. Радиальная часть волновой функции. Квантование энергии. Угловая часть волновой функции атома водорода. Квантование проекции момента количества движения. Кратность вырождения.

4. Приближенные методы квантовой теории

Квазиклассическое приближение. Правило квантования Бора - Зоммерфельда. Туннельный эффект. Теория альфа - распада. Теория возмущений, не зависящих от времени в отсутствии и при наличии вырождения Эффект Зеемана. Линейный эффект Штарка на водороде.

Нестационарная теория возмущений. Спонтанные переходы. Метод коэффициентов Эйнштейна. Двухуровневая квантовая система.

5. Упругое рассеяние частиц

Дифференциальное и полное поперечное сечения рассеяния. Упругие и неупругие реакции. Порог реакции. Первое борновское приближение и условие его применимости. Вывод формулы Резерфорда.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

IBI	Количество аудиторных часов					рных	ний
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Форма контроля знаний
1	2	3	4	5	6	7	9
1	Введение	8	2				опрос
2	Математический аппарат квантовой механики	20	6				1 – 6
3	Точно решаемые задачи квантовой механики	8	6				1 – 6
	Контрольная работа №1		2				
4	Приближенные методы квантовой теории	20	6				1-6
5	Упругое рассеяние частиц	8	6				1 – 6
	Контрольная работа №2		2				
	Итого	64	30				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемая литература

Основная

- 1. Ландау, Л. Д. Теоретическая физика: учеб. пособие: в 10 т. Т. 3: Квантовая механика (нерелятивистская теория) / Л. Д. Ландау, Е. М. Лифшиц; под ред. Л. П. Питаевского. Изд. 6 –е, испр. М.: ФИЗМАТЛИТ, 2008. 800 с.
- 2. Мултановский, В. В. Курс теоретической физики. Квантовая механика: учеб. пособие для ВУЗов / В. В. Мултановский, А. С. Василевский. 2 –е изд., перераб. М.: ДРОФА, 2007. 399 с.
- 3. Савельев, И. В. Курс общей физики: учеб. пособие для вузов: в 5 кн. Кн. 5: Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. М.: Астрель: АСТ, 2001. 368 с.

Дополнительная

- 4. Богуш, А. А. Ведение в калибровочную полевую теорию электрослабых взаимодействий /О. М. Бояркин. М.: УРСС, 2020. 345 с.
- 5. Бояркин, О. М. Физика массивных нейтрино / О. М. Бояркин. М. : Комкнига, 2017. 212 с.
- 6. Бояркин, О. М. Физика частиц. Квантовая электродинамика и стандартная модель / О. М. Бояркин, Г. Г. Бояркина. М. : Издательство "Книжный дом", 2020.-436 с.
- 7. Бояркин, О. М. Физика частиц. От электрона до бозона Хиггса. Квантовая теория свободных полей / О. М. Бояркин, Г. Г. Бояркина. М. : Издательство "Книжный дом", 2020. 291 с.
- 8. Бояркин, О. М. Введение в физику элементарных частиц / О. М. Бояркин. М. : КомКнига, 2025. 260 с.
- 9. Елютин, П. В. Квантовая механика с задачами / П. В. Елютин, В. Д. Кривченков. М. : УРСС, 2022.-302 с.
- 10. Ландау, Л. Д. Квантовая механика. Нерелятивистская теория/ Л. Д. Ландау, Е. М. Лифшиц. М.: УРСС, 2019. 800 с.

Инновационные методы и подходы к преподаванию дисциплины

При организации образовательного процесса используется:

метод анализа конкретных ситуаций (кейс-метод), который предполагает:

- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники.

метод проектного обучения, который предполагает:

- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

метод учебной дискуссии который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, практические занятия, самостоятельная работа студентов.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

На практических занятиях следует обратить особое внимание на решение задач с прикладным содержанием из физики микромира, имеющих важное значение для описания структуры вещества на уровне атома и клетки.

Самостоятельная работа студентов может быть направлена на изучение научных статей, подготовку сообщений и рефератов, подготовку материалов, научных докладов, научно-исследовательских работ для участия в научно-практических конференциях, конкурсах.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Качество самостоятельной работы студентов целесообразно проверять в ходе текущего промежуточного и итогового контроля в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам дисциплины (модулям).

Перечень рекомендуемых средств диагностики

- 1. Контрольные работы;
- 2. Самостоятельные работы;
- 3. Тесты;
- 4. Коллоквиумы по пройденному теоретическому материалу;
- 5. Устный опрос в ходе практических занятий;
- 6. Проверку конспектов лекций студентов.

Темы самостоятельных работ:

- 1. Решение с помощью ЭВМ задачи о частице, находящейся в потенциальной яме конечной глубины.
- 2. Решение уравнения Шредингера для полупроницаемой перегородки в виде δ -образного потенциального барьера.
 - 3. Рассеяние на симметричном потенциальном барьере.
- 4. Решение уравнения Шредингера для дираковской потенциальной гребенки.
 - 5. Атом водорода.
 - 6. Применение метода ВКБ к радиальному уравнению.
 - 7. Проблема Кеплера в приближении ВКБ.

Вопросы к экзамену

- 1) Открытие электрона
- 2) Излучение АЧТ. Гипотеза Планка
- 3) Теория фотонов Эйнштейна
- 4) Комптоновское рассеяние
- 5) Гипотеза де-Бройля. Опыт Дэвиссона Джермера
- 6) Корпускулярно-волновой дуализм. Вероятностная интерпретация волн де-Бройля.
- 7) Пакет волн де-Бройля
- 8) Соотношение неопределенностей Гейзенберга
- 9) Линейные и эрмитовские операторы
- 10) Собственные значения и собственные функции операторов
- 11) Скалярное произведение двух функций
- 12) Основные аксиомы квантовой механики
- 13) Операторы простейших физических величин
- 14) Условия одновременного и точного измерения физических величин.
- 15) Уравнение Шредингера
- 16) Частица в бесконечно глубокой потенциальной яме
- 17) Средние значения физических величин
- 18) Соотношения неопределенностей для физических величин
- 19) Стационарные состояния
- 20) Производная от оператора по времени
- 21) Уравнение непрерывности. Плотность потока вероятности
- 22) Законы преобразования волновой функции при преобразовании координат. Теорема Нётер.
- 23) Гармонический осциллятор
- 24) Атом водорода. Разделение переменных
- 25) Радиальная часть волновой функции. Квантование энергии.
- 26) Угловая часть волновой функции атома водорода.
- 27) Четность

28)	Метод функций Грина.
29)	Метод функции Грина для неоднородного волнового уравнения
30)	Функция Грина для уравнения Шредингера
31)	Опыты Гейгера и Марсдена. Формула Резерфорда
32)	Квазиклассическое приближение
33)	Граничные условия в квазиклассическом приближении
34)	Правило квантования Бора-Зоммерфельда
35)	Туннельный эффект
36)	Стационарная теория возмущений без наличия вырождения
37)	Стационарная теория возмущения при наличии вырождения
38)	Эффект Штарка на водороде
39)	Нестационарная теория возмущений
40)	Спонтанные переходы. Коэффициенты Эйнштейна

Протокол согласования учебной программы

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			