Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А. Д ахарова БГУ

О. И. Родькин

Регистрационный № УД-1443-25 /уч.

КВАНТОВАЯ ФИЗИКА

Учебная программа учреждения образования по учебной дисциплине для специальности:

7-07-0533-03 Ядерная и радиационная безопасность

Учебная программа составлена на основе ОСВО 7-07-0533-03-2023 Ядерная и радиационная безопасность от 10.08.2023 и учебного плана учреждения высшего образования для специальности 7-07-0533-03 Ядерная и радиационная безопасность Рег.№161-23/уч. от 07.04.2023

составитель:

О.М. Бояркин, профессор кафедры ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета, доктор физико-математических наук, профессор

РЕЦЕНЗЕНТЫ:

В.В. Махнач, доцент кафедры физико-математических дисциплин Института информационных технологий Белорусского государственного университета информатики и радиоэлектроники, кандидат физико-математических наук, доцент;

В.А. Иванюкович, доцент кафедры информационный технологий в экологии и медицине учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерных и медицинских технологий учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол № 11 от 10 и и 2025);

Научно-методическим советом учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» Белорусского государственного университета (протокол $N_{\underline{9}}$ от <u>учреждения</u> 2025)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель учебной дисциплины — познакомить студентов с фундаментальными принципами и законами современной физики и добиться понимания студентами общей структуры физической науки и структуры конкретных физических теорий.

Задачи учебной дисциплины:

- ознакомить студентов с математическим аппаратом квантовой механики;
- дать представление о подходах, используемых в квантовой теории к описанию частиц и коллективных явлений в веществе;
- научить студента количественно формулировать и решать задачи, описывающие квантовые явления;
- научить студентов пользоваться фундаментальными принципами и законами для анализа конкретных физических процессов и явлений;
- систематически и полно изложить студенту основные принципы и законы физики микромира;
 - способствовать развитию научного мировоззрения.

Учебная дисциплина относится к модулю «Теоретическая физика» наряду с «Теоретической механикой» компонента учреждения образования. Предполагает предварительное изучение дисциплин «Математический анализ», «Аналитическая геометрия линейная И «Дифференциальные и интегральные уравнения», «Физика ионизирующего излучения», «Молекулярная физика» и др. Изучение дисциплины «Квантовая физика» необходимо для дальнейшего освоения дисциплин «Физическое материаловедение», «Ядерные и радиационные технологии», дисциплин модуля «Физика ядерных реакторов» и т.д.

Курс «Квантовая физика» играет основную роль в формирования целостных представлений о современной физической природе мира. Содержание этого раздела физики составляет формулировка общих законов природы, объяснение конкретных явлений на основе этих законов и предсказание новых явлений.

Изучение квантовой физики должно сопровождаться физическими примерами, объясняющими общетеоретические положения. С необходимой точностью следует рассмотреть вопросы, связанные с теми или иными предположениями и ограничениями в теории, с постановкой задачи и интерпретацией результатов, C выяснением области разработанных методов и с возможными обобщениями теории. Квантовая механика формирует у студентов представление о строении вещества на атомно-молекулярном уровне. Для овладения математическим аппаратом квантовой механики, студенты должны научиться получать точные и приближенные решения уравнения Шредингера. Изложение приближенных методов вычислений следует сопровождать конкретными примерами и сравнением теоретических и экспериментальных результатов. Знание

современной техники эксперимента позволит студенту иметь ясное представление о границах применимости существующей теории микромира.

Воспитательное значение учебной дисциплины физика» заключается в формировании у студентов современного научного мировоззрения И глубокого понимания фундаментальных микромира; развитии способностей К абстрактному мышлению математическому моделированию квантовых систем; воспитании исследовательских навыков, аналитического подхода творческого мышления при решении нестандартных физических задач; формировании таких качеств, как научная добросовестность, точность, системность и ответственность при проведении теоретических и экспериментальных исследований.

Изучение данной дисциплины способствует становлению специалиста, способного применять глубокие теоретические знания для решения актуальных проблем современной науки и техники. У студентов развивается стремление к инновационной деятельности, профессиональному росту в области высоких технологий, а также социально значимые качества: осознание роли фундаментальной науки в развитии общества, гражданская ответственность и патриотизм, направленные на укрепление научнотехнического потенциала страны.

Курс «Квантовая физика» формирует у обучающихся способность критически оценивать научную информацию, самостоятельно осваивать новые знания и применять их на практике, что создаёт основу для непрерывного саморазвития и профессиональной самореализации в условиях быстро развивающихся наукоёмких технологий.

При изучении учебной дисциплины студент должен овладеть следующими специализированными компетенциями: применять квантовомеханический подход ДЛЯ объяснения атомно-молекулярных явлений и оценки характеристик атомов и молекул, использовать картины Шредингера, Гейзенберга и Дирака для определения векторов состояния и наблюдаемых квантово-механических систем, рассчитывать энергетические спектры систем посредством решения стационарного уравнения Шредингера.

В результате усвоения дисциплины студент должен:

знать:

- основные законы физики микромира;
- методы описания квантово-механических систем; точные решения уравнения Шредингера для простейших потенциалов;
- основные методы приближенных решений уравнения Шредингера; модели, применяемые в квантовой физике для решения важнейших прикладных задач;
- структуру, тенденции развития и использования достижений современной физики микромира;

уметь:

- вычислять коммутаторы операторов важнейших физических величин, находить собственные функции и собственные значения этих операторов в простейших случаях;
- решать уравнение Шредингера в простейших случаях одномерных задач и при движении частицы в центрально-симметричном потенциальном поле;
- применять соотношения неопределенностей физических величин, решения задач на собственные значения и собственные функции операторов этих величин, решения других типовых задач квантовой механики к оценке параметров, описывающих поведение более сложных квантовых систем;
 - вычислять величины поперечных сечений взаимодействия *иметь навык:*
 - владения математическим аппаратом квантовой механики;
 - владения основами представления о структуре материи;
- использования фундаментальных принципов построения физики микромира.

Дисциплина изучается в 5-м семестре. В соответствии с учебным планом изучение дисциплины рассчитано на общее количество часов 216. Аудиторное количество часов 110, из них лекции — 54 ч, практические занятия — 20 ч, лабораторные занятия — 36 ч.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет и экзамен в 5 семестре.

Трудоемкость дисциплины составляет 6 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Введение

Эксперименты, подтверждающие ограниченность классических представлений. Гипотеза де-Бройля. Корпускулярно — волновой дуализм. Пакет волн де-Бройля. Соотношения неопределенностей Гейзенберга. Волновая функция и ее вероятностная интерпретация.

2. Математический аппарат квантовой механики

Алгебра Линейные операторов. И эрмитовские операторы. Собственные значения и собственные функции операторов. Скалярное произведение волновых функций. Дельта функция Дирака. Нормировка функций линейных эрмитовских операторов собственных случае дискретного и непрерывного спектра. Аксиомы нерелятивистской квантовой Понятие измерения квантовой В механике. одновременной и точной измеримости физических величин. Физический смысл волновой функции в L-представлении. Понятие о полном наборе взаимно коммутирующих операторв. Средние значения физических величин. Соотношения неопределеностей для физических величин, которых не коммутируют.

Нестационарное и стационарное уравнения Шредингера. Стационарные состояния. Уравнение непрерывности в нерелятивистской квантовой механике. Закон сохранения числа частиц. Производная от оператора по времени. Квантовые скобки Пуассона. Законы сохранения физических величин в квантовой механике. Принцип соответствия.

3. Точно решаемые задачи квантовой механики

Частица в одномерной прямоугольной потенциальной яме. Одномерный линейный гармонический осциллятор. Водородоподобный атом. Разделение переменных в уравнении Шредингера. Радиальная часть волновой функции. Квантование энергии. Угловая часть волновой функции атома водорода. Квантование проекции момента количества движения. Кратность вырождения.

4. Приближенные методы квантовой теории

Квазиклассическое приближение. Правило квантования Бора - Зоммерфельда. Туннельный эффект. Теория возмущений, не зависящих от времени в отсутствии и при наличии вырождения Эффект Зеемана. Линейный эффект Штарка на водороде.

Нестационарная теория возмущений. Спонтанные переходы. Метод коэффициентов Эйнштейна.

5. Упругое рассеяние частиц

Дифференциальное и полное поперечное сечения рассеяния. Упругие и неупругие реакции. Первое борновское приближение и условие его применимости. Вывод формулы Резерфорда.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

IBI		Количество аудиторных часов					ний
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Форма контроля знаний
1	2	3	4	5	6	7	9
1	Введение	4	2		8		1 – 6
2	Математический аппарат квантовой механики	18	4		8		1 – 6
3	Точно решаемые задачи квантовой механики	8	2		8		1 – 6
	Контрольная работа №1		2				
4	Приближенные методы квантовой теории	18	4		8		1 – 6
5	Упругое рассеяние частиц	6	4		4		1 – 6
	Контрольная работа №2		2				
	Итого	54	20		36		

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемая литература

Основная

- 1. Ландау, Л. Д. Теоретическая физика: учеб. пособие: в 10 т. Т. 3: Квантовая механика (нерелятивистская теория) / Л. Д. Ландау, Е. М. Лифшиц; под ред. Л. П. Питаевского. Изд. 6 е, испр. М.: ФИЗМАТЛИТ, 2008. 800 с.
- 2. Мултановский, В. В. Курс теоретической физики. Квантовая механика: учеб. пособие для ВУЗов / В. В. Мултановский, А. С. Василевский. 2 –е изд., перераб. М.: ДРОФА, 2007. 399 с.
- 3. Савельев, И. В. Курс общей физики : учеб. пособие для вузов : в 5 кн. Кн. 5 : Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц / И. В. Савельев. М. : Астрель : АСТ, 2001. 368 с.

Дополнительная

- 4. Богуш, А. А. Ведение в калибровочную полевую теорию электрослабых взаимодействий /О. М. Бояркин. М.: УРСС, 2020. 345 с.
- 5. Бояркин, О. М. Физика массивных нейтрино / О. М. Бояркин. М. : Комкнига, 2017. 212 с.
- 6. Бояркин, О. М. Физика частиц. Квантовая электродинамика и стандартная модель / О. М. Бояркин, Г. Г. Бояркина. М. : Издательство "Книжный дом", 2020.-436 с.
- 7. Бояркин, О. М. Физика частиц. От электрона до бозона Хиггса. Квантовая теория свободных полей / О. М. Бояркин, Г. Г. Бояркина. М. : Издательство "Книжный дом", 2020. 291 с.
- 8. Бояркин, О. М. Введение в физику элементарных частиц / О. М. Бояркин. М. : КомКнига, 2025. 260 с.
- 9. Елютин, П. В. Квантовая механика с задачами / П. В. Елютин, В. Д. Кривченков. М. : УРСС, 2022. 302 с.
- 10. Ландау, Л. Д. Квантовая механика. Нерелятивистская теория/ Л. Д. Ландау, Е. М. Лифшиц. М. : УРСС, 2019. 800 с.

Перечень рекомендуемых средств диагностики

- 1. Контрольные работы;
- 2. Самостоятельные работы;
- 3. Тесты;
- 4. Коллоквиумы по пройденному теоретическому материалу;
- 5. Устный опрос в ходе практических и лабораторных занятий;
- 6. Проверку конспектов лекций студентов.

Инновационные методы и подходы к преподаванию дисциплины

При организации образовательного процесса используется:

метод анализа конкретных ситуаций (кейс-метод), который предполагает:

- приобретение студентом знаний и умений для решения практических задач;
- анализ ситуации, используя профессиональные знания, собственный опыт, дополнительную литературу и иные источники.

метод проектного обучения, который предполагает:

- способ организации учебной деятельности студентов, развивающий актуальные для учебной и профессиональной деятельности навыки планирования, самоорганизации, сотрудничества и предполагающий создание собственного продукта;
- приобретение навыков для решения исследовательских, творческих, социальных, предпринимательских и коммуникационных задач.

метод учебной дискуссии который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме. Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

При реализации данной дисциплины используются следующие виды учебных занятий: лекции, консультации, практические занятия, самостоятельная работа студентов.

В рамках лекционных занятий предусмотрено использование мультимедийных средств.

На практических занятиях следует обратить особое внимание на решение задач с прикладным содержанием из физики микромира, имеющих важное значение для описания структуры вещества на уровне атома и клетки.

Самостоятельная работа студентов может быть направлена на изучение научных статей, подготовку сообщений и рефератов, подготовку материалов, научных докладов, научно-исследовательских работ для участия в научно-практических конференциях, конкурсах.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Качество самостоятельной работы студентов целесообразно проверять в ходе текущего промежуточного и итогового контроля в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам дисциплины (модулям).

Примерный перечень тем лабораторных работ

- 1. Дифракция электроном на кристаллических структурах.
- 2. Изотопический сдвиг.
- 3. Квантование энергии и волновые функции электрона в атоме водорода.
- 4. Спектр атома водорода.
- 5. Спектральный анализ атомного состава источника излучения.
- 6. Стационарные состояния электрона в одномерных потенциальных ямах.
 - 7. Тормозное рентгеновское излучение.
 - 8. Характеристическое рентгеновское излучение.
 - 9. Эффект Рамзауэра.

Примерный перечень тем самостоятельных работ

- 1. Решение с помощью ЭВМ задачи о частице, находящейся в потенциальной яме конечной глубины.
- 2. Рассеяние на симметричном потенциальном барьере.
- 3. Решение уравнения Шредингера для дираковской потенциальной гребенки.
 - 4. Атом водорода.
 - 5. Применение метода ВКБ к радиальному уравнению.
 - 6. Проблема Кеплера в приближении ВКБ.

Вопросы к экзамену

- 1) Открытие электрона.
- 2) Излучение АЧТ. Гипотеза Планка.
- 3) Теория фотонов Эйнштейна.
- 4) Гипотеза де-Бройля. Опыт Дэвиссона Джермера.
- 5) Корпускулярно-волновой дуализм. Вероятностная интерпретация волн де-Бройля.
- 6) Пакет волн де-Бройля.
- 7) Соотношение неопределенностей Гейзенберга.
- 8) Линейные и эрмитовские операторы.
- 9) Собственные значения и собственные функции операторов.
- 10) Скалярное произведение двух функций.
- 11) Основные аксиомы квантовой механики.
- 12) Операторы простейших физических величин.
- 13) Условия одновременного и точного измерения физических величин.

- 14) Уравнение Шредингера.
- 15) Частица в бесконечно глубокой потенциальной яме.
- 16) Средние значения физических величин.
- 17) Соотношения неопределенностей для физических величин.
- 18) Стационарные состояния.
- 19) Производная от оператора по времени.
- 20) Уравнение непрерывности. Плотность потока вероятности.
- 21) Законы преобразования волновой функции при преобразовании координат.
- 22) Гармонический осциллятор.
- 23) Атом водорода. Разделение переменных.
- 24) Радиальная часть волновой функции. Квантование энергии.
- 25) Угловая часть волновой функции атома водорода.
- 26) Четность.
- 27) Функция Грина для уравнения Шредингера.
- 28) Опыты Гейгера и Марсдена. Формула Резерфорда.
- 29) Квазиклассическое приближение.
- 30) Граничные условия в квазиклассическом приближении.
- 31) Правило квантования Бора-Зоммерфельда.
- 32) Туннельный эффект.
- 33) Стационарная теория возмущений без наличия вырождения.
- 34) Стационарная теория возмущения при наличии вырождения.
- 35) Эффект Штарка на водороде.
- 36) Нестационарная теория возмущений.
- 37) Спонтанные переходы. Коэффициенты Эйнштейна.

Протокол согласования учебной программы

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			