БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского паротвенно о университета А.Д.Король

27 июня 2025 г. Регистрационный № 3077/н.

ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Учебная программа учреждения образования по учебной дисциплине для специальности:

7-07-0531-02 Химия высоких энергий

Учебная программа составлена на основе ОСВО 7-07-0531-02-2023 и учебного плана № 7-5.5-69/01 от 15.05.2023.

составители:

И.М.Кимленко, заведующий кафедрой радиационной химии и химико-Белорусского факультета химического фармацевтических технологий государственного университета, кандидат химических наук, доцент; радиационной химикокафедры доцент С.Л.Лейнова, факультета Белорусского технологий химического фармацевтических государственного университета, кандидат химических наук.

РЕЦЕНЗЕНТ:

Т.А.Тимофеева, доцент кафедры экологии учреждения образования «Гомельский государственный университет имени Франциска Скорины», кандидат биологических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой радиационной химии и химико-фармацевтических технологий БГУ (протокол № 11 от 19.06.2025)

Научно-методическим советом БГУ (протокол № 11 от 26.06.2025)

Заведующий кафедрой

the

И.М.Кимленко

T. B. Kolawayk-Powwinewal

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цель и задачи учебной дисциплины

Цель состоит в подготовке высококвалифицированных специалистов, обладающих глубокими знаниями о назначении и применении разнообразных источников ионизирующего излучения (ИИИ); путях поступления радионуклидов в биосферу и особенностях поведения радионуклидов в различных средах; методах получения, идентификации и использования радионуклидов, а также о способах минимизации радиационных рисков при обращении с ИИИ и в результате нахождения радионуклидов в окружающей среде.

Задачи учебной дисциплины

- получение представлений о назначении, конструкционных особенностях, потенциальных возможностях аппаратурных ИИИ, применяемых на практике, и специфике обращения с ними;
- систематизация знаний о естественных и техногенных источниках радионуклидов, радиационных и химических свойствах радионуклидов, особенностями их состояния и поведения в биосфере;
- получение представлений о современных методах получения радионуклидов;
- ознакомление с энергетикой ядерных превращений и перспективными способами преобразования ядерной энергии в тепловую и электрическую энергию, применением радионуклидов в военных, производственных, медицинских и исследовательских целях;
- получение углубленных представлений о физико-химических формах нахождения радионуклидов в основных элементах биосферы (почва, природные воды, атмосфера) и способах оценки их подвижности в зависимости от химической природы радионуклидов и особенностей миграционной среды;
- овладение приемами анализа радиоэкологической ситуации в зависимости от содержания и форм нахождения радионуклидов в почве, природных водах и атмосфере;
- развитие умения выбирать наиболее рациональные приемы обращения с радиоактивными веществами для минимизации радиационного риска;
- воспитание чувства ответственности за сохранение радиоэкологической безопасности окружающей среды,
- выработка гражданской активности при решении возникающих проблем при обращении с радионуклидами.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к модулю «Введение в специальность» компонента учреждения образования.

Учебная программа составлена с учетом межпредметных связей с учебными дисциплинами «Дозиметрия и защита от ионизирующих излучений», «Радиометрия».

Требования к компетенциям

Освоение учебной дисциплины «Источники ионизирующих излучений» должно обеспечить формирование следующих компетенций:

Специализированные компетенции:

Понимать суть ядерных превращений и последствия этих процессов, включая природные радиоактивные процессы, законы и энергетику ядерного распада, механизмы ядерных реакций, процессы, протекающие в ядерном реакторе, для дальнейшего более глубокого изучения общих и специализированных курсов.

В результате изучения дисциплины обучаемый должен:

знать:

основные типы излучения радионуклидов и источники их поступления в окружающую среду;

принципы, лежащие в основе создания и использования аппаратурных ИИИ, их назначение и потенциальные возможности применения;

основные типы ядерных превращений в природе и используемых для получения энергии в мирных и военных целях;

особенности реакций термоядерного синтеза, условия их протекания и перспективы использования для получения электрической энергии;

радиационные свойства основных изотопов радиоактивных элементов (радона, урана, плутония, америция и других) и одиночных радионуклидов биогенной природы (3 H, 40 K, 14 C), особенности их химического состояния и поведения в различных элементах биосферы;

принципы, лежащие в основе применения радионуклидов в геохронологии, калий-аргоновый, радиоуглеродный и другие методы датирования природных образований;

современные методы получения и применение радионуклидов в ядерной энергетике, научных исследованиях, промышленности, сельском хозяйстве и медицине;

крупнейшие радиационные аварии, их причины и последствия;

влияние испытаний ядерного оружия и Чернобыльской катастрофы на радиационную обстановку в Республике Беларусь и других странах;

основные дозообразующие радионуклиды в регионах, пострадавших от Чернобыльской катастрофы, факторы, влияющие на перераспределение радионуклидов в окружающей среде;

миграционные свойства радионуклидов цезия, стронция, плутония и америция на территории, загрязненной радионуклидами, и способы их оценки;

пути поступления радионуклидов в организм человека, их поведение в организме, особенности распределения по органам и биологическим тканям в зависимости от химической природы и формы поступления;

защитные мероприятия, направленные на снижение внешнего и внутреннего облучения жителей Беларуси в результате присутствия техногенных и/или антропогенных радионуклидов в окружающей среде;

уметь:

- выбирать наиболее рациональные приемы обращения с ИИИ для минимизации радиационного риска;
- определять интенсивность миграции радионуклидов и их накопление в отдельных компонентах экосистем;
- оценивать опасность для человека, обусловленную присутствием радионуклидов в окружающей среде;

иметь навык:

- обращения с ИИИ с учетом степени радиационной опасности при работе с ними;
- оценки радиоэкологической ситуации в зависимости от содержания и форм нахождения радионуклидов в почве, природных водах и атмосфере;
 - минимизации радиационных рисков.

Структура учебной дисциплины

Дисциплина изучается в 5 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Источники ионизирующих излучений» отведено для очной формы получения высшего образования — 162 часа, в том числе 76 аудиторных часов, лекции — 50 часов, семинарские занятия — 26 часов. Из них:

Лекции — 50 часов, семинарские занятия — 18 часов, управляемая самостоятельная работа — 8 часов.

Трудоемкость учебной дисциплины составляет 5 зачетных единиц. Форма промежуточной аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

РАЗДЕЛ 1. ВВЕДЕНИЕ

Тема 1.1 Основные понятия и терминология

Природные и техногенные источники ионизирующих излучений. Энергия излучения радионуклидов в сравнении с другими видами энергии. Основные типы ядерных превращений. Ядерные реакции с участием частиц и гаммаквантов. Вопросы радиационной безопасности при работе с источниками излучений.

РАЗДЕЛ 2. ЕСТЕСТВЕННЫЙ РАДИАЦИОННЫЙ ФОН

Тема 2.1 Космическое излучение

Первичные и вторичные космические лучи. Особенности галактических космических лучей (ГКЛ). Влияние магнитных полей Солнечной системы на интенсивность ГКЛ. Космические лучи солнечного происхождения (СКЛ). Интенсивность СКЛ в зависимости от солнечной активности. Особенности вторичного космического излучения.

Магнитное поле гелиосферы как первая линия защиты от ГКЛ. Магнитосфера и радиационные пояса Земли и их роль в ослаблении космической радиации. Ядерные реакции в атмосфере Земли. Космогенные радионуклиды. Защитная роль земной атмосферы от космических лучей. Космическая радиация и эффективная доза облучения жителей Земли.

Тема 2.2 Земная радиация

Ядерные превращения в литосфере Земли. Происхождение радионуклидов земной литосферы. Терригенные радионуклиды.

РАЗДЕЛ 3. ТЕХНОГЕННЫЕ ИСТОЧНИКИ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Тема 3.1 Источники ионизирующих излучений на основе радионуклидов и их применение

Использование радионуклидов в промышленности, сельском хозяйстве, медицине и научных исследованиях. Принципы выбора радионуклидов для использования в различных целях.

Источники а- и b-излучения. Их типы, особенности конструкции, условия эксплуатации и применение. Источники g-излучения и их виды. Спектры излучения, возможности, условия эксплуатации, особенности конструкции. Источники рентгеновского излучения и их виды. Основные энергетические характеристики. Рентгеновские и g- установки, их типы и применение. Источники нейтронов. Плутоний-бериллиевые источники быстрых нейтронов.

Полоний-бериллиевые и полоний-борные источники нейтронов. Конструкция, назначение и условия эксплуатации нейтронных источников.

Тема 3.2 Ускорители заряженных частиц

Ускоритель как источник излучения. Типы ускорителей. Сравнение с источниками излучений на основе радионуклидов. Особенности конструкции и специфика работы ускорителей (линейные, каскадные, импульсные, циклические ускорители). Диапазон энергий получаемых на ускорителе.

Циклическое ускорение. Вид траекторий. Принцип действия и устройство циклотрона. Циклотрон с пространственной вариацией магнитного поля.

адронный коллайдер. Принцип действия, Защита ускорителей. Тормозное излучение. Фотонейтроны. назначение. Использование ускорителей Биологическая зашита. ДЛЯ проведения радиационно-химических процессов. Сшивание полиэтилена, отверждение модифицирование текстильных прививочная покрытий, материалов, полимеризация.

Использование ускорителей при производстве радионуклидов для научных, производственных и медицинских целей.

Тема 3.3 Ядерный реактор как источник излучения

Реакция ядерного деления. Деление тяжелых ядер под действием тепловых нейтронов и нейтронов высоких энергий. Делящиеся радионуклиды и ядерное сырье. Цепной процесс ядерного деления и условия его протекания. Мгновенные и запаздывающие нейтроны и их роль в поддержании цепного процесса деления ядер. Продукты и выход нуклидов в результате ядерного деления. Энергетический выход и практическое значение реакций ядерного деления. Управляемые ядерные реакции.

Принцип работы ядерного реактора. Типы реакторов и их основные физические характеристики. Конструктивные особенности ядерных реакторов различного типа. Использование кинетической энергии осколков деления. Использование смешанных потоков нейтронного и **g**- излучений. Гамма-излучение продуктов деления «отработанных» тепловыделяющих элементов ядерных реакторов. Радиационный контур ядерного реактора.

Исследовательские энергетические и импульсные реакторы.

Проекты возможного использования ядерной энергии на самолетах, локомотивах (поездах), атомных модульных модифицированных реакторах, атомных тачках. Атомные ледоколы, авианосцы и подводные лодки.

РАЗДЕЛ 4. ТЕРМОЯДЕРНЫЙ СИНТЕЗ И ПЕРСПЕКТИВЫ ЕГО ИСПОЛЬЗОВАНИЯ

Тема 4.1 Термоядерные реакции в недрах звезд

Термоядерные реакции и условия их протекания. Энергетический выход реакций термоядерного синтеза. Современные процессы нуклеосинтеза в

недрах звезд. Термоядерный синтез гелия из водорода и его энергетический выход. Превращение гелия в более тяжелые ядра. Процесс Солпитера, альфапроцесс. Равновесный процесс. Медленный и быстрый нейтронный захват и образование тяжелых нуклидов. Протонный захват и образование «обойденных» нуклидов. Образование дейтерия, лития, бериллия и бора.

Тема 4.2 Управляемый термоядерный синтез

Перспективы использования управляемого термоядерного синтеза (УТС). Осуществление реакций термоядерного синтеза условиях В Управляемый термоядерный синтез на основе дейтерия и трития. Недостатки термоядерного горючего на основе дейтерия и трития. Альтернативные виды синтеза и проблемы, термоядерного связанные ДЛЯ безопасность Радиационная использованием. термоядерных Аргументы в пользу использования УТС для производства электроэнергии. Другие возможности использования УТС.

РАЗДЕЛ 5. ЭКОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ ЯДЕРНЫХ ВЗРЫВОВ И ДЕЯТЕЛЬНОСТИ ПРЕДПРИЯТИЙ ЯДЕРНОГО ТОПЛИВНОГО ЦИКЛА

Tema 5.1 Испытания ядерного оружия и загрязнение окружающей среды

Понятие «ядерное оружие». Процессы, лежащие в основе действия ядерного оружия. Атомные бомбы пушечного и имплозивного типа. Термоядерные и водородные бомбы. Испытательные ядерные полигоны. Радионуклиды «свежих» и глобальных выпадений после испытаний ядерного оружия. Их перераспределение и воздействие на окружающую среду. Вопросы нераспространения ядерного оружия.

Тема 5.2 Проблемы безопасности объектов ядерного топливного цикла

Этапы ЯТЦ. Оценка возможности загрязнения окружающей среды на каждом этапе ЯТЦ. Атомные электростанции. Основные виды ядерного топлива. Атомные электростанции в различных регионах мира. Оценка состояния окружающей среды при нормальном режиме работы АЭС. Основные виды радиоактивных отходов и обращения с ними. Захоронение отходов и требования к местам захоронения.

Тема 5.3 Радиоактивные частицы в атмосфере Земли

Понятие «радиоактивные частицы». История возникновения проблемы радиоактивных частиц. Радиоактивные частицы при наземных и воздушных ядерных взрывах. Радиоактивные («горячие») частицы, образующиеся в результате аварий на предприятиях ЯТЦ. Основные направления исследования радиоактивных частиц. Способы регистрации радиоактивных частиц.

Опасность радиоактивных частиц для человека и пути их поступления в организм.

Тема 5.4. Радиационные аварии и их классификация

Отличие радиационных аварий от других техногенных аварий. Международная шкала ядерных событий (INES). Крупнейшие радиационные аварии в истории развития ядерной энергетики. Загрязнения окружающей среды в результате радиационных аварий. Причины аварий, сопровождавшихся расплавлением активной зоны реактора.

Авария на ЧАЭС и ее последствия для Республики Беларусь. Причины аварии. Формирование радиоактивных выпадений. Радиоэкологическая обстановка на территории Беларуси до и после аварии. Особенности загрязнения радионуклидами различных экосистем. Последствия Чернобыльской катастрофы для Республики Беларусь.

РАЗДЕЛ 6. РАДИОНУКЛИДЫ В ОКРУЖАЮЩЕЙ СРЕДЕ

Тема 6.1. Оценка состояния и подвижности радионуклидов в основных элементах биосферы

Почва и ее роль в процессах перераспределения радионуклидов в окружающей среде. Почвенная поровая влага и ее роль в процессах геохимической и биологической миграции радионуклидов. Формы нахождения радионуклидов в почве, определяющие процессы их перераспределения в почвенной среде, поступление в грунтовые и поверхностные воды и растительность наземных экосистем.

Оценка подвижности и биологической доступности радионуклидов в экосистемах. Экспериментально определяемые показатели миграционной способности радионуклидов. Запас и координата средневзвешенного радионуклида почве. Коэффициент количества В распределения радионуклида между твердой и жидкой фазой почвы. Показатели, характеризующие биологическую доступность радионуклидов: биологического коэффициенты накопления, перехода И поглошения радионуклидов. Другие показатели, используемые для оценки миграционной способности радионуклидов в наземных экосистемах.

Тема 6.2 Уран и трансурановые элементы

Источники поступления урана в окружающую среду. Природный фон и антропогенное загрязнение ураном. Химические особенности урана, определяющие формы его нахождения в почвах и природных водах. Радиационная и химическая токсичность урана. Биологическая опасность урана.

Источники поступления плутония и америция в окружающую среду. Химические особенности элементов, определяющие формы их нахождения в почвах и природных водах. Трансформация химических форм техногенных радионуклидов плутония и америция после поступления на земную поверхность. Подвижность америция в наземных экосистемах в сравнении с подвижностью плутония. Биологическая опасность радионуклидов плутония и америция.

Тема 6.3 Радон

Природные изотопы радона и их радиационные свойства. Источники поступления радона в окружающую среду. Физические свойства радона. Химические свойства, получение и идентификация радона. Воздействие радона на организм человека. Ограничение на облучения техногенным радоном и дочерними продуктами его распада. Защита от излучения природного радона и его дочерних продуктов в производственных условиях и в быту.

Тема 6.4 Одиночные радионуклиды: источники поступления, поведение в биосфере и применение в геохронологии

Тритий в составе природных изотопов водорода. Радиационные свойства трития. Происхождение природного трития. Термоядерный Образование трития в производственных процессах. Химические формы и поведение трития в окружающей среде. Фракционирования изотопов водорода условиях. Применение трития. Использование геохронологии подземных вод. Искусственное получение И методы определения трития. Радиологические свойства трития.

Радиоактивный калий в составе природных изотопов калия. Распространенность и нахождение 40 К в окружающей среде. Особенности радиоактивного распада и радиационные свойства радионуклида. 40 К как источник 40 Аг в атмосфере Земли. Роль 40 К в генерации радиогенного тепла. Калий - аргоновый метод датирования природных образований.

Радиоактивный углерод в составе природной смеси изотопов углерода. Искусственные изотопы углерода и их радиационные свойства. Образование ¹⁴С и его участие в круговороте углерода на Земле. Геохимический цикл углерода и роль карбонатно-кальциевой системы в этом цикле. Биологический и биотехногенный циклы радиоактивного углерода. Радиоуглеродный метод датирования. Факторы, определяющие вариабельность содержания ¹⁴С в атмосфере Земли. Калибровка метода радиоуглеродного датирования. Использование ¹⁴С в геохронологии подземных вод.

Тема 6.5 Миграционные свойства радионуклидов цезия и стронция

Особенности загрязнения различных экосистем радиоактивными цезием и стронцием. Состояния радиоактивного цезия и радиоактивного стронция в почве. Изменение со временем их подвижности в почвенно-растительном покрове. Формы нахождения радионуклидов цезия и стронция в почвах разного типа и их подвижность в экосистемах.

Тема 6.6 Особенности определения содержания радионуклидов в образцах различной природы

Особенности подготовки образцов различной природы, содержащих радионуклиды, исследованиям. Методы гомогенизации И отбора представительных проб. Методы концентрирования радионуклидов. Особенности термической обработки твердофазных образцов концентрирования растворов упариванием.

Роль индикаторов («меток») и носителей радионуклидов в радиохимическом анализе. Принципы выбора индикаторов и носителей радионуклидов для радиохимического анализа образцов. Индикаторы для радиохимического анализа образцов на содержание ⁹⁰Sr, альфа-излучающих изотопов плутония, ²⁴¹Am чернобыльского происхождения.

РАЗДЕЛ 7. ВОЗДЕЙСТВИЕ РАДИОНУКЛИДОВ НА ОРГАНИЗМ ЧЕЛОВЕКА

Тема 7.1 Внешнее облучение

Прямое и косвенное действие ионизирующего излучения на биологические объекты. Действие ионизирующего излучения на биологические молекулы и клетки, на органы, ткани и системы органов человека. Радиочувствительность клеток, органов и биологических тканей. Общая реакция организма человека на внешнее облучение.

Тема 7.2. Поступление радионуклидов в организм человека и их накопление биологическими тканями и органами

Пути поступления радионуклидов в организм человека. Основные параметры, характеризующие опасность радионуклидов при их попадании в организм. Основные дозообразующие радионуклиды чернобыльского происхождения и их поведение в организме человека.

Tema 7.3 Последствия воздействия ионизирующего излучения на организм человека

Внешнее и внутреннее облучение человека за счет естественного радиационного фона, испытаний ядерного оружия и радиационных аварий. Острые и отдаленные последствия облучения. Детерминированные и стохастические эффекты облучения. Линейно-беспороговая гипотеза возникновения радиационных эффектов. Последствия воздействия на организм человека основных дозообразующих радионуклидов.

Тема 7.4 Защитные мероприятия, направленные на снижение поступления радионуклидов в организм человека и их воздействия на человека

Основные принципы регламентирования дозовых нагрузок. Основные и вспомогательные нормативы, регламентирующие облучение жителей Беларуси.

Мероприятия по снижению воздействия чернобыльских радионуклидов на население: отселение людей, дезактивация отдельных объектов, соблюдение гигиены, контроль содержания радионуклидов в продуктах питания, меры по уменьшению поступления радионуклидов в пищевые продукты, лечебные и оздоровительные мероприятия.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования

161	g		Количество аудиторных часов				m	
Номер раздела, темы	Название раздела, темы.	Лекции	Практические занятия	Лабораторные занятия	Семинарские занятия	Иное	Количество часов УСР	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1	Введение							
1.1	Основные понятия и терминология	2						Экспресс-опрос
2	Естественный радиационный фон							
2.1	Космическое излучение	2					2	Контрольная работа
2.2	Земная радиация	2						Экспресс-опрос
3	Техногенные источники ионизирующего излучения							
3.1	Источники ионизирующих излучений на основе радионуклидов и их применение	2			2			Устный опрос
3.2	Ускорители заряженных частиц	2			2			Устный опрос
3.3	Ядерный реактор как источник излучения	4					2	Контрольная работа
4	Термоядерный синтез и перспективы его использования							
4.1	Термоядерные реакции в недрах звезд	2						Экспресс-опрос
4.2	Управляемый термоядерный синтез	2			2			Эвристический диалог
5	Экологические последствия ядерных взрывов и деятельности предприятий ядерного топливного цикла							

5.1	Испытания ядерного оружия и загрязнение окружающей среды	2		2	Контрольная работа
5.2	Проблемы безопасности объектов ядерного топливного цикла	4	2		Эвристический диалог
5.3	Радиоактивные частицы в атмосфере Земли	2			Экспресс-опрос
5.4	Радиационные аварии и их классификация	2	2		Аналитический обзор
6	Радионуклиды в окружающей среде				
6.1	Оценка состояния и подвижности радионуклидов в основных элементах биосферы	2			
6.2	Уран и трансурановые элементы	4		2	Контрольная работа
6.3	Радон	2			Экспресс-опрос
6.4	Одиночные радионуклиды: источники поступления, поведение в биосфере и применение в геохронологии	2	2		Устный опрос
6.5	Миграционные свойства радионуклидов цезия и стронция	2	2		Устный опрос
6.6	Особенности определения содержания радионуклидов в образцах различной природы	2			Экспресс-опрос
7	Воздействие радионуклидов на организм человека				
7.1	Внешнее облучение	2			Экспресс-опрос
7.2	Поступление радионуклидов в организм человека и их накопление биологическими тканями и органами	2			Экспресс-опрос
7.3	Последствия воздействия ионизирующего излучения на организм человека	2	2		Устный опрос
7.4	Защитные мероприятия, направленные на снижение поступления радионуклидов в организм человека и их воздействия на человека	2	2		Аналитический обзор
	Итого	50	18	8	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Белозерский Г.Н. Радиационная экология : учебник для вузов / Г.Н. Белозерский. 2-е изд., перераб. и доп. Москва : Юрайт, 2024. 418 с.
- 2. Григорьева Д.В. Действие ионизирующих излучений на биообъекты : учеб. пособие / Д.В. Григорьева, И.В. Горудко, Г.Г. Мартинович. Мн : Вышэйшая школа, 2023. 264 с.
- 3. Савастенко В.А. Радиационная безопасность. Практикум: учебное пособие / В.А. Савастенко. Мн: РИВШ, 2024. 175 с.
- 4. Смирнов С.Н. Радиационная экология. Физика ионизирующих излучений : учебник для вузов / С.Н. Смирнов, Д.Н. Герасимов. Москва : Издательский дом МЭИ, 2022. 325 с.

Дополнительная литература

- 1. Абрамов, А.И. Основы ядерной физики / А. И. Абрамов. Изд. 2-е. Москва : URSS : ЛЕНАНД, 2021. 256 с.
- 2. Бекман, И.Н. Атомная и ядерная физика. Радиоактивность и ионизирующие излучения : учебник для вузов / И. Н. Бекман. 2-е изд., испр. и доп. Москва : Юрайт, 2021. 493 с.
- 3. Беспалов, В.И. Лекции по радиационной защите. 6-е изд., доп. Томск : Изд-во Томского политехнического ун-та, 2020. 722 с.
- 4. Боровой, А. А. Чернобыль и Фукусима. Некоторые итоги / А. А. Боровой, Е. П. Велихов. Москва : Курчатовский институт, 2021. 75 с.
- 5. ВВЭР-1200: эволюция классики. Физические основы эксплуатации, системы и элементы, ядерное топливо, безопасность / [авт.: С. А. Андрушечко и др.]. Москва: Логос, 2020. 671 с.
- 6. Герменчук М. Г. Радиационный мониторинг окружающей среды : учеб. пособие / М. Г. Герменчук. Мн : Вышэйшая школа, 2021. 278 с.
- 7. Гулаков, И. Р. Регистрация ионизирующих излучений : учеб. пособие / И. Р. Гулаков. Минск : Вышэйшая школа, 2021. 287 с.
- 8. Зорин, В. М. Атомные электростанции. Вводный курс : учебное пособие / В. М. Зорин. 3-е изд., стер. Москва : МЭИ, 2022. 184 с.
- 9. Иоффе, Б. Л. История науки: атомные проекты: монография для вузов / Б. Л. Иоффе. 2-е изд., перераб. и доп. Москва: Юрайт, 2021. 191 с.
- 10. Лизунов, А.В. Получение изотопов / А. В. Лизунов, И. Г. Тананаев. 2-е изд., стер. Москва : Издательский дом МЭИ, 2023. 253 с.
- 11. Ободовский, И.М. Источники ионизирующих излучений / И. М. Ободовский. Долгопрудный : Интеллект, 2016. 142 с.
- 12. Общая и медицинская радиология: радиационные технологии: учеб. пособие для вузов / [РНИМУ им. Н. И. Пирогова; сост.: В. Н. Кулаков и др.]; под ред. А. Н. Усенко. 2-е изд. Москва: Юрайт, 2023. 217 с.

- 13. Основы радиоэкологии и безопасной жизнедеятельности : пособие для учителей общеобразовательных учреждений / [Г. А. Соколик и др. ; под. общ. ред. Т. Н. Ковалевой, Г. А. Соколик, С. В. Овсянниковой]. Минск : ИВЦ Минфина, 2019. 366 с.
- 14. Ролевич, И.В. Защита населения и объектов от чрезвычайных ситуаций. Радиационная безопасность / И. В. Ролевич, Г. И. Морзак, Е. В. Зеленухо. –Минск: БНТУ, 2020. 109 с.
- 15. Радиационная безопасность технологических источников ионизирующего излучения (в вопросах и ответах). Минск : БНТУ, 2017. –129 с.
- 16. Радиационная безопасность медицинских источников ионизирующего излучения (в вопросах и ответах). Минск : БНТУ, 2017. 127 с.
- 17. Радиобиология: медико-экологические проблемы / С. А. Маскевич [и др.]; под ред. С. А. Маскевича. Минск: ИВЦ Минфина, 2019. 255 с.
- 18. Ташлыков, О. Л. АЭС: продление ресурса и снятие с эксплуатации: учебник для студентов вуза / О. Л. Ташлыков; [науч. ред. С. Е. Щеклеин]. Екатеринбург: Изд-во Уральского ун-та, 2020. 214 с.
- 19. Тошинский, Г. И. Беседы о ядерной энергетике. Физика реакторов и технологии модульных быстрых реакторов с теплоносителем свинец-висмут (для начинающих и не только) / Г. И. Тошинский. Москва : Проспект, 2022. 475 с.
- 20. Черняев, А.П. Ускорители в современном мире / А. П. Черняев. Москва : Изд-во Московского ун-та, 2012. 367 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Текущий контроль уровня знаний, обучающихся может осуществляться с использованием следующих средств диагностики:

- 1. Эвристические диалоги по отдельным темам;
- 2. Проведение экспресс- и устных опросов;
- 3. Аналитические обзоры по отдельным темам;
- 4. Контрольные работы.

Формой промежуточной аттестации по дисциплине «Источники ионизирующих излучений» учебным планом предусмотрен зачет в 5 семестре.

Примерный перечень заданий для управляемой самостоятельной работы

Тема 2.1 «Космическое излучение» (2 ч)

Задание 1. Изучить состав и особенности первичных и вторичных космических лучей.

Задание 2. Рассмотреть ядерные реакции в атмосфере Земли и проанализировать происхождение радионуклидов.

Задание 3. Рассмотреть роль магнитного поля гелиосферы, магнитосферы и радиационных поясов Земли в ослаблении космической радиации. Проанализировать данные по эффективным дозам облучения жителей различных регионов планеты.

Форма контроля – контрольная работа.

Тема 3.3 «Ядерный реактор как источник излучения» (2 ч)

Задание 1. Рассмотреть типы реакторов и их основные физические характеристики.

Задание 2. Изучить особенности конструкции современных ядерных реакторов на основе деления тяжелых атомных ядер.

Задание 3. Изучить подходы к обеспечению безопасной работы ядерных реакторов.

Форма контроля – контрольная работа.

Tema 5.1 Испытания ядерного оружия и загрязнение окружающей среды (2 ч)

Задание 1. Рассмотреть использование радионуклидов для получения ядерной энергии в военных целях и процессы, лежащие в основе действия ядерного оружия. Описать конструкцию атомных бомб пушечного и имплозивного типа.

Задание 2. Рассмотреть политику различных стран мира в сфере нераспространения ядерного оружия.

Форма контроля – контрольная работа.

Тема 6.2 «Уран и трансурановые элементы» (2 ч)

Задание 1. Рассмотреть источники поступления урана в окружающую среду и его химические особенности, определяющие формы его нахождения в почвах и природных водах.

Задание 2. Рассмотреть источники поступления плутония и америция в окружающую среду и их химические особенности, определяющие формы его нахождения в почвах и природных водах.

Задание 3. Проанализировать биологическую опасность радионуклидов. **Форма контроля** – контрольная работа.

Примерный перечень семинарских занятий

- 1. Использование радионуклидов в промышленности, сельском хозяйстве, медицине и научных исследованиях 2 часа.
- 2. Использование ускорителей при производстве радионуклидов для научных, производственных и медицинских целей 2 часа.
- 3. Аргументы в пользу использования УТС для промышленного получения электрической энергии 2 часа.

- 4. Загрязнение окружающей среды в результате радиационных аварий 2 часа.
- 5. Миграционная способность основных дозообразующих радионуклидов 2 часа.
 - 6. Тритий в окружающей среде 2 часа.
- 7. Особенности подготовки к исследованиям образцов различной природы, содержащих радионуклиды 2 часа.
- 8. Воздействие радионуклидов на организм человека. Мероприятия по снижению воздействия чернобыльских радионуклидов на население и меры по уменьшению поступления радионуклидов в пищевые продукты 4 часа.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

Линейный (традиционный) метод (лекция, семинарские занятия);

Активные (интерактивные) методы:

проблемно-ориентированное обучение PBL (Problem-Based Learning). Обучающиеся приобретают знания и навыки при решении реальных, открытых проблем. Учебный процесс строится на основе практических заданий, а не традиционного изложения материала, что способствует более глубокому пониманию и развитию навыков критического мышления;

командно-ориентированное обучение TBL (Team-Based Learning). Обучение, основанное на использовании малых групп, дает возможность сначала изучить учебный материал, а на занятии применить полученные знания, умения и навыки при помощи последовательности действий, включающей индивидуальную работу, командную работу, а также мгновенную обратную связь;

научно-ориентированное обучение RBL (Research-Based Learning). центральным Исследование становится инструментом образовательного процесса. Вместо традиционного усвоения готовых знаний, студенты активно исследовательской деятельности, что участвуют способствует более глубокому пониманию материала И развитию навыков критического мышления.

Методические рекомендации по организации самостоятельной работы обучающихся

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск и обзор литературы и электронных источников по заданной теме;
- изучение материалов, размещенных на образовательном портале https://educhem.bsu.by/ (дисциплина «Источники ионизирующих излучений»);

- анализ нормативно-правовых материалов, размещенных на Национальном правовом Интернет-портале Республики Беларусь http://www.pravo.by;
 - подготовка к семинарским занятиям.

Внеаудиторные учебные занятия проводятся с использованием электронной образовательной среды образовательного портала https://educhem.bsu.by/.

Электронный образовательный контент по учебной дисциплине размещается на образовательном портале https://educhem.bsu.by/.

Доступ к ресурсам учебной дисциплины обучающихся осуществляется с использованием авторизации посредствам учетных записей.

Примерный перечень вопросов к зачету

- 1. Природные и техногенные источники ионизирующих излучений. Вопросы радиационной безопасности при работе с ними.
- 2. Основные типы ядерных превращений в природе. Ядерные превращения в атмосфере и литосфере Земли. Земная радиация. Терригенные радионуклиды.
- 3. Первичные и вторичные космические лучи, их состав и особенности. Защитная роль магнитных полей гелиосферы, Земли и земной амтосферы в ослаблении космической радиации. Эффективная доза облучения жителей Земли
- 4. Источники g-, b- и a-излучения, их виды, особенности конструкции, условия эксплуатации и применение.
- 5. Источники рентгеновского излучения и их виды. Основные энергетические характеристики. Рентгеновские и g- установки, их типы и применение.
- 6. Источники нейтронов. Плутоний-бериллиевые источники быстрых нейтронов. Полоний-бериллиевые и полоний-борные источники нейтронов. Конструкция, назначение и условия эксплуатации нейтронных источников.
- 7. Ускоритель как источник излучения. Типы ускорителей, особенности конструкции и специфика работы. Диапазон энергий, получаемых на ускорителе. Большой адронный коллайдер. Защита ускорителей.
- 8. Использование ускорителей для проведения радиационно-химических процессов, при производстве радионуклидов для научных, производственных и медицинских целей.
- 9. Реакция ядерного деления, энергетический выход и практическое значение. Делящиеся радионуклиды и ядерное сырье. Мгновенные и запаздывающие нейтроны и их роль в поддержании цепного процесса деления ядер. Продукты и выход нуклидов в результате ядерного деления.
- 10. Принцип работы ядерного реактора. Типы реакторов, их основные характеристики и конструктивные особенности.

- 11. Термоядерные реакции и условия их протекания. Современные процессы нуклеосинтеза в недрах звезд. Термоядерный синтез гелия из водорода.
- 12. Превращение гелия в более тяжелые ядра. Процесс Солпитера, альфапроцесс. Равновесный процесс. Медленный и быстрый нейтронный захват и образование тяжелых нуклидов. Образование «обойденных» нуклидов. Образование дейтерия, лития, бериллия и бора.
- 13. Перспективы использования управляемого термоядерного синтеза в условиях Земли. Управляемый термоядерный синтез на основе дейтерия и трития. Недостатки термоядерного дейтерий-тритиевого горючего.
- 14. Альтернативные виды горючего для термоядерного синтеза и проблемы, связанные с их использованием. Радиационная безопасность термоядерных реакторов. Аргументы в пользу использования УТС для производства электроэнергии и других целей.
- 15. Источники поступления урана в окружающую среду. Природный фон и антропогенное загрязнение ураном. Химические особенности урана, определяющие формы его нахождения в почвах и природных водах. Радиационная, химическая токсичность и биологическая опасность урана.
- 16. Источники поступления плутония и америция в окружающую среду. Химические особенности элементов, определяющие формы их нахождения в почвах и природных водах. Биологическая опасность радионуклидов плутония и америция.
- 17. Природные изотопы радона и их радиационные свойства. Источники поступления радона в окружающую среду и его воздействие на организм человека. Ограничение на облучения техногенным радоном и дочерними продуктами его распада. Защита от излучения в производственных условиях и в быту.
- 18. Тритий в составе природных изотопов водорода. Радиационные свойства трития. Происхождение природного трития. Термоядерный тритий. Образование трития в производственных процессах. Химические формы и поведение трития в окружающей среде. Применение трития.
- 19. Радиоактивный калий в составе природных изотопов калия. Особенности радиоактивного распада и радиационные свойства радионуклида. 40 К как источник 40 Аг в атмосфере Земли. Роль 40 К в генерации радиогенного тепла. Калий аргоновый метод датирования природных образований.
- 20. Радиоактивный углерод в составе природной смеси изотопов углерода. Образование ¹⁴С и его участие в круговороте углерода на Земле. Геохимический, биологический и биотехногенный циклы радиоактивного углерода. Радиоуглеродный метод датирования.
- 21. Понятие «ядерное оружие». Процессы, лежащие в основе действия ядерного оружия.
- 22. Основные типы ядерного оружия и принцип их действия. Атомные бомбы пушечного и имплозивного типа. Термоядерное оружие.
 - 23. Испытательные ядерные полигоны за пределами СССР.

- 24. Испытания ядерного оружия и загрязнение окружающей среды. Испытательные ядерные полигоны на территории СССР.
- 25. Использование радионуклидов для получения ядерной энергии в мирных целях. Возможность применения ядерной энергии на военных и промышленных объектах.
- 26. Атомные электростанции в странах Европы и других континентов. Оценка состояния окружающей среды при нормальном режиме работы АЭС.
- 27. Использование радионуклидов и ионизирующего излучения в промышленности, сельском хозяйстве, медицине, научных исследованиях.
- 28. Радионуклиды «свежих» и глобальных выпадений после испытаний ядерного оружия. Их перераспределение и воздействие на окружающую среду.
- 29. Этапы ядерного топливного цикла (ЯТЦ). Оценка возможности загрязнения окружающей среды на каждом этапе ЯТЦ. Захоронение отходов и требования к местам захоронения.
- 30. Понятие «радиоактивные частицы». История возникновения проблемы радиоактивных частиц. Радиоактивные частицы при наземных и воздушных ядерных взрывах.
- 31. Радиоактивные («горячие») частицы, образующиеся в результате аварий на предприятиях ЯТЦ. Основные направления исследования радиоактивных частиц. Способы их регистрации.
- 32. Отличие радиационных аварий от других техногенных аварий. Международная шкала ядерных событий (INES). Примеры крупнейшие радиационные аварии в истории развития ядерной энергетики.
- 33. Авария на ЧАЭС и ее последствия для Республики Беларусь. Причины аварии. Формирование радиоактивных выпадений. Радиоэкологическая обстановка на территории Беларуси до и после аварии.
- 34. Особенности загрязнения различных экосистем радиоактивными цезием. Формы нахождения радионуклидов цезия в почвах разного типа.
- 35. Особенности загрязнения различных экосистем радиоактивными стронцием. Состояния радиоактивного стронция в почве и изменение со временем его подвижности в почвенно-растительном покрове.
- 36. Показатели, характеризующие биологическую доступность радионуклидов. Формы нахождения плутония и америция в почвах с различным составом почвенного комплекса.
- 37. Прямое и косвенное действие ионизирующего излучения на биологические объекты (на биологические молекулы и клетки, на органы, ткани и системы органов человека). Пути поступления радионуклидов в организм человека.
- 38. Основные дозообразующие радионуклиды чернобыльского происхождения и их поведение в организме. Параметры, характеризующие опасность радионуклидов при их попадании в организм.
- 39. Внешнее и внутреннее облучение человека за счет естественного радиационного фона, испытаний ядерного оружия и радиационных аварий. Детерминированные и стохастические эффекты облучения. Линейно-

беспороговая гипотеза возникновения радиационных эффектов.

40. Основные принципы регламентирования дозовых нагрузок. Мероприятия по снижению воздействия радионуклидов на население при внешнем облучении и меры по уменьшению поступления радионуклидов в пищевые продукты.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название учебной	Название кафедры	Предложения об	Решение, принятое
дисциплины, с		изменениях в	кафедрой,
которой требуется		содержании	разработавшей
согласование		учебной	учебную программу
		программы по	(с указанием даты и
		изучаемой	номера протокола)
		дисциплине	
Радиометрия	Кафедра	Предложения	Рекомендовать к
	радиационной	отсутствуют	утверждению
	химии и химико-		учебную программу
	фармацевтических		(Протокол № 11 от
	технологий		19.06.2025)
Дозиметрия и	Кафедра	Предложения	Рекомендовать к
защита от	радиационной	отсутствуют	утверждению
ионизирующих	химии и химико-		учебную программу
излучений	фармацевтических		(Протокол № 11 от
	технологий		19.06.2025)

Заведующий кафедрой радиационной химии и	
химико-фармацевтических технологий,	
к.х.н., доцент	И.М.Кимленко

19.06.2025

дополнения и изменения к учебной программе уо

на ____/___ учебный год

№ п/п	Дополнени	я и изменения	Основание				
Учебн	Учебная программа пересмотрена и одобрена на заседании кафедры						
(назва	(протокол № от 202_ г.) (название кафедры)						
Заведующий кафедрой							
	РЖДАЮ						
декан	факультета						