БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского государственного университета
А.Д.Король

27 июня 2025 г.
Регистрационный № 3237/б.

ТЕОРИЯ ЭКСПЕРИМЕНТА

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0531-01 Химия

Профилизация: Зеленые химические технологии функциональных материалов и систем

Учебная программа составлена на основе ОСВО 6-05-0531-01-2023, учебного плана № 6-5.5-41/01 от 15.05.2023.

составитель:

Е.Н.Степурко, доцент кафедры физической химии и электрохимии химического факультета Белорусского государственного университета, кандидат химических наук, доцент

РЕЦЕНЗЕНТ:

И.В.Гарисм, доцент кафедры химической технологии высокомолекулярных соединений учреждения образования «Белорусский государственный университет пищевых и химических технологий», кандидат химических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой физической химии и электрохимии БГУ (протокол № 15 от 19.06.2025)

Научно-методическим советом БГУ (протокол № 11 от 26.06.2025)

Заведующий кафедрой

Е.А.Стрельцов

T. B. Kolomorye- Pasuncesa e

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины — изучение основ современных методологических подходов к постановке, проведению и обработке результатов физико-химических исследований; изучение математических методов, применяемых при оптимизации и планировании эксперимента.

Задачи учебной дисциплины:

- 1.Получение студентами теоретических знаний и практических навыков, необходимых для критического анализа экспериментальных данных, грамотной обработки результатов исследований, включающей количественную оценку погрешности выполненных измерений.
- 2. Приобретение учащимися знаний в области планирования, организации и оптимизации научно-исследовательской работы.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к модулю «Математические методы в химии» (компонент учреждения образования)

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Студенты химического факультета в «Теория эксперимента» получают знания и навыки по методам обработки получаемых ими экспериментальных данных, правил проведения расчетов, причем рассматриваемые в курсе примеры построены на основе типичных задач физико-химического практикума, результатов выполнения курсовых и дипломных работ студентами, данных научных исследований преподавателей и сотрудников химического факультета. Дисциплина является теоретической и методологической основой для всех последующих специальных курсов специализации для качественного проведения научных исследований и грамотного оформления результатов, полученных при выполнении курсовых и дипломных работ.

Требованиями к «входным» знаниям, умениям и готовностям обучающегося, необходимым при освоении данной дисциплины, являются знание таких глав математики, как математический анализ, дифференциальные исчисления, а также знание основ математической статистики и теории вероятностей;

Требования к компетенциям

Освоение учебной дисциплины «Теория эксперимента» должно обеспечить формирование следующейкомпетенции:

Специализированные компетенции:

Применять методы математического анализа, дифференциального исчисления, теории вероятностей, теории статистического оценивания для решения задач химического содержания.

В результате освоения учебной дисциплины студент должен:

знать:

- классификацию ошибок измерений и их особенности, основные числовые характеристики случайных величин и их свойства;
- особенности оценок параметров генерального распределения и способы их получения; методы построения доверительных интервалов; распределения Стъюдента, Пирсона, Фишера, критерии Бартлета, Кохрена; теоретические основы сопоставления экспериментальных данных с получением единой наилучшей оценки;
- методы корреляционного и регрессионного анализов; метод наименьших квадратов;
- методы планирования и оптимизации эксперимента; матрицы планирования полных и дробных факторных экспериментов;

уметь:

- рассчитывать погрешности арифметических действий и функции одной или нескольких переменных;
- проводить статистическую проверку гипотез с использованием критериев Стъюдента, Фишера, Пирсона и других;
- вычислять средние и выборочные дисперсии, проводить их оценку и сравнение;
- рассчитывать случайную и оценивать суммарную ошибки косвенных измерений, вычислять средневзвешенное значение искомой величины;
- применять метод наименьших квадратов для описания линейных, квадратичных и более сложных зависимостей;
- проводить регрессионный анализ линейного уравнения с проверкой адекватности уравнения эксперименту, расчетом погрешностей коэффициентов и оценкой их значимости и вычислением коэффициента корреляции;
- планировать проведение многофакторного экстремального эксперимента, использовать ПФЭ и ДФЭ в применении к задачам физической химии;

иметь навык:

- постановки, проведения и обработки результатов физико-химических исследований;
 - оптимизации и планирования физико-химического эксперимента.

Структура учебной дисциплины

Дисциплина изучается в 5 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Теория эксперимента» отведено для очной формы получения высшего образования — 90 часов, в том числе 44 аудиторных часов, лекции — 30 часов, практические занятия — 14 часов. Из них:

Лекции — 30 часов, практические занятия — 10 часов, управляемая самостоятельная работа (УСР) — 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Основные характеристики случайных величин

Tema 1.1. Случайные величины. Классификация ошибок измерений. Оценка погрешностей. Распределение случайных величин.

Понятие о результате эксперимента как случайной величине. Случайные величины. Классификация ошибок измерений. Прямые и косвенные измерения. Абсолютная и относительная погрешность. Оценка погрешностей функций приближенных аргументов. Распределение случайных величин. Функция распределения и плотность распределения случайной величины.

Тема 1.2. Числовые характеристики случайной величины. Нормальное и стандартное распределения случайной величины. Задача об абсолютном отклонении.

Свойства математического ожидания и дисперсии. Нормированная случайная величина. Квантили. Нормальное и стандартное распределения случайной величины. Функция Лапласа. Определение вероятности попадания результата единичного эксперимента в заданный интервал значений. Задача об абсолютном отклонении.

Раздел 2. Определение параметров функции распределения

Тема 2.1. Понятие об оценках параметров генерального распределения. Метод максимального правдоподобия. Дисперсия среднего серии измерений.

Генеральная совокупность и случайная выборка. Понятие об оценках параметров генерального распределения; состоятельные, несмещенные и эффективные оценки. Метод максимального правдоподобия. Оценка математического ожидания и дисперсии нормально распределенной случайной величины. Дисперсия среднего серии измерений.

Тема 2.2. Доверительные интервалы и доверительная вероятность, уровень значимости. Проверка статистических гипотез, ошибки первого и второго рода. Распределение Стъюдента.

Доверительные интервалы и доверительная вероятность, уровень значимости. Построение доверительного интервала для математического ожидания нормально распределенной случайной величины с известным генеральным стандартом. Проверка статистических гипотез, критерии значимости, ошибки первого и второго рода.

Оценка математического ожидания непосредственно измеряемой величины. Распределение Стъюдента.

Тема 2.3. Оценка ошибки косвенных измерений. Оценка дисперсии, распределение Пирсона. Сравнение двух дисперсий, распределение Фишера.

Оценка случайной и суммарной ошибки косвенных измерений. Оценка дисперсии нормально распределенной случайной величины; распределение Пирсона.

Сравнение двух дисперсий, распределение Фишера.

Тема 2.4. Сравнение нескольких дисперсий; критерии Бартлета, Кохрена. Сравнение двух средних; расчет средневзвешенного значения. Проверка однородности результатов измерений.

Определение дисперсии по текущим измерениям. Сравнение нескольких дисперсий; критерии Бартлета, Кохрена. Сравнение двух средних; расчет средневзвешенного значения. Проверка однородности результатов измерений.

Раздел 3. Методы корреляционного и регрессионного анализов

Тема 3.1. Системы случайных величин. Условные законы распределения. Стохастическая связь. Ковариация. Приближенная регрессия; метод наименьших квадратов.

Системы случайных величин. Функция и плотность распределения системы двух случайных величин. Условные законы распределения. Стохастическая связь. Ковариация. Коэффициент корреляции, его свойства. Линии регрессии. Выборочный коэффициент корреляции; проверка гипотезы об отсутствии корреляции.

Приближенная регрессия; метод наименьших квадратов, его обоснование при нормальном распределении случайных величин на основе принципа максимального правдоподобия.

Тема 3.2. Линейная регрессия от одного параметра. Регрессионный анализ. Аппроксимация. Основы корреляционного анализа. Метод множественной корреляции.

Линейная регрессия от одного параметра. Регрессионный анализ: проверка значимости коэффициентов регрессии и адекватности уравнения регрессии, построение коридора ошибок. Аппроксимация, параболическая регрессия. Оценка тесноты нелинейной связи, корреляционный анализ. Метод множественной корреляции.

Раздел 4. Методы планирования эксперимента

Tema 4.1. Полный факторный эксперимент. Дробный факторный эксперимент.

Постановка задачи при планировании экстремальных экспериментов. Полный факторный эксперимент. Планы типа 2^2 и 2^3 : матрица планирования, вычисление коэффициентов уравнения регрессии, проверка значимости коэффициентов и адекватности уравнения регрессии. Дробный факторный эксперимент. Планы типа 2^{k-1} .

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

MbI				Количество аудиторных часов				
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	2	3	4	5	6	7	8	9
1	Основные характеристики случайных величин.	6	2					
1.1	Случайные величины. Классификация ошибок измерений. Оценка погрешностей. Распределение случайных величин	2	1					Коллоквиум. Решение задач.
1.2	Числовые характеристики случайной величины. Нормальное и стандартное распределения случайной величины. Задача об абсолютном отклонении.	4	1					Коллоквиум. Решение задач.
2	Определение параметров функции распределения	10	2				2	
2.1	Понятие об оценках параметров генерального распределения. Метод максимального правдоподобия. Дисперсия среднего серии измерений.	4	0,5				0,5	Коллоквиум. Решение задач. Контрольная работа.
2.2	Доверительные интервалы и доверительная вероятность, уровень значимости. Проверка статистических гипотез, ошибки первого и	2	0,5				0,5	Коллоквиум. Решение задач. Контрольная работа.

	второго рода. Распределение Стъюдента.					
2.3	Оценка ошибки косвенных измерений. Оценка дисперсии, распределение Пирсона. Сравнение двух дисперсий, распределение Фишера.	2	0,5		0,5	Коллоквиум. Решение задач. Контрольная работа.
2.4	Сравнение нескольких дисперсий; критерии Бартлета, Кохрена. Сравнение двух средних; расчет средневзвешенного значения. Проверка однородности результатов измерений.	2	0,5		0,5	Коллоквиум. Решение задач. Контрольная работа.
3	Методы корреляционного и регрессионного анализов.	8	4		1	
3.1	Системы случайных величин. Условные законы распределения. Стохастическая связь. Ковариация. Приближенная регрессия; метод наименьших квадратов	4	2		0,5	Коллоквиум. Решение задач. Контрольная работа.
3.2	Линейная регрессия от одного параметра. Регрессионный анализ. Аппроксимация. Основы корреляционного анализа. Метод множественной корреляции.	4	2		0,5	Коллоквиум. Решение задач. Контрольная работа.
4	Методы планирования эксперимента.	6	2		1	
4.1	Полный факторный эксперимент. Дробный факторный эксперимент.	6	2		1	Решение задач. Контрольная работа
	Итого	30	10		4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Вершинин, В. И. Планирование и математическая обработка результатов химического эксперимента: учебное пособие для вузов / В. И. Вершинин, Н. В. Перцев. 5-е изд., стер. Санкт-Петербург: Лань, 2022.
- 2. Айзина, Ю. А. Теория химического эксперимента: учебное пособие / Ю. А. Айзина. Иркутск : ИРНИТУ, 2018. 124 с.
- 3. Юдин, Ю.В. Организация и математическое планирование эксперимента: учебное пособие / Ю.В. Юдин, М.В. Майсурадзе, Ф.В. Водолазский.— Екатеринбург: Изд-во Урал. ун-та, 2018.— 124 с.

Дополнительная литература

- 1. Блохин, А.В. Теория эксперимента. Курс лекций. В 2 ч. Ч. 1. / А.В. Блохин. Мн.: БГУ, 2002.-68 с.
- 2. Блохин, А.В.Теория эксперимента. Курс лекций. В 2 ч. Ч. 2. / А.В. Блохин. Мн.: БГУ, 2003. 67 с.
- 3. Митин И.В. Анализ и обработка экспериментальных данных. Учебно-методическое пособие для студентов младших курсов /И.В. Митин, В.С. Русаков В.С.— М.: Физический факультет МГУ, 2004. 44 с
- 4. Третьяк, Л. Н. Основы теории и практики обработки экспериментальных данных: учебное пособие для бакалавриата и магистратуры / Л. Н. Третьяк, А. Л. Воробьев; под общей редакцией Л. Н. Третьяк. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2018. 237 с.
- 5. Волосухин, В.А. Планирование научного эксперимента: учебник / В.А. Волосухин, А.И. Тищенко. М.: Инфра-МРИОР, 2014 175 с.
- 6. Гребенникова, И.В. Методы математической обработки экспериментальных данных: Учебно-методическое пособие / Гребенникова И.В., 2-е изд., стер. Москва :Флинта, Изд-во Урал. ун-та, 2017. 124 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Для диагностики компетенций могут использоваться следующие средства текущей аттестации: контрольная работа; коллоквиум; решение задач.

Формой промежуточной аттестации по дисциплине «Теория эксперимента» учебным планом предусмотрен зачет.

Примерный перечень заданий для управляемой самостоятельной работы

Тема 2.1: Понятие об оценках параметров генерального распределения. Метод максимального правдоподобия. Дисперсия среднего серии измерений (0,5 часов)

 $3a\partial aнue$ 1. Оценить математическое ожидание нормально распределенной случайной величины с известным значением генеральной дисперсии по выборке объемом n.

Задание 2. Определение вероятности того, что случайная величина примет значения, удаленные от математического ожидания не более, чем на 3σ

Форма контроля - Контрольная работа.

Тема 2.2: Доверительные интервалы и доверительная вероятность, уровень значимости. Проверка статистических гипотез, ошибки первого и второго рода. Распределение Стъюдента (0,5 часов)

Задание 1. Определить наилучшую оценку математического ожидания и генеральной дисперсии по результатам выбоки при отсутствии сведений о генеральной дисперсии

Задание 2. Построить доверительный интервал для математического ожидания прямо измеряемой величины при небольшом объеме выборки (использование коэффициента Стъюдента)

Форма контроля - Контрольная работа.

Тема 2.3:Оценка ошибки косвенных измерений. Оценка дисперсии, распределение Пирсона. Сравнение двух дисперсий, распределение Фишера (0,5 часов)

Задание 1. Оценить абсолютную и относительную погрешность функции нескольких приближенных аргументов, считая их погрешности независимыми и случайными.

Задание 2. Сравнить дисперсии двух серий измерений с использованием критерия Фишера

Форма контроля - Контрольная работа.

Тема 2.4: Сравнение нескольких дисперсий; критерии Бартлета, Кохрена. Сравнение двух средних; расчет средневзвешенного значения. Проверка однородности результатов измерений (0,5 часов)

Задание 1. Проверить однородность результатов серии измерений физико-химической величины, используя v-критерий

Задание 2. Сравнить средние арифметические значения двух серий измерений, найти средневзвешенное значение измеряемой величины и определитьего погрешность.

Форма контроля - Контрольная работа.

Тема 3.1: Системы случайных величин. Условные законы распределения. Стохастическая связь. Ковариация. Приближенная регрессия; метод наименьших квадратов (0,5 часов)

Задание 1. Определить наличие связи между сериями измерений двух величин методом (определения ковариации и выборочного коэффициента корреляции)

Форма контроля - Контрольная работа.

Тема 3.2: Линейная регрессия от одного параметра. Регрессионный анализ. Аппроксимация. Основы корреляционного анализа. Метод множественной корреляции (0,5 часов)

Задание 1. Методом наименьших квадратов в линейном приближении получить уравнение регрессии серии измерений двух зависимых величин.

Задание 2. Провести проверку адекватности линейного уравнения регрессии эксперименту, проверить значимость коэффициентов и рассчитать их погрешности, построить «коридор ошибок».

Форма контроля - Контрольная работа.

Tema 4.1: Полный факторный эксперимент. Дробный факторный эксперимент(1 час)

Задание 1. Определить влияние факторов на процесс используя полный факторный эксперимент

Форма контроля - Контрольная работа.

Примерный перечень практических занятий

Практическое занятие № 1.

Правила приближенных вычислений. Статистическая проверка гипотез. Построение доверительного интервала для математического ожидания нормально распределенной случайной величины с известным генеральным стандартом.

Практическое занятие № 2.

Вычисление средних арифметических значений и выборочных дисперсий по выборке заданного объема. Использование критериев Стъюдента, Фишера, Пирсона, Бартлета, Кохрена для оценки генеральных параметров и проверки статистических гипотез.

Практическое занятие № 3.

Сравнение выборочных дисперсий и средних арифметических значений двух серий измерений. Расчет средневзвешенного значения.

Практическое занятие № 4.

Метод наименьших квадратов для описания линейных, квадратичных и некоторых других зависимостей. Регрессионный анализ линейного уравнения приближенной регресии: проверка адекватности уравнения, расчет погрешностей коэффициентов и оценка их значимости, вычисление коэффициента корреляции.

Практическое занятие № 5.

Планирование экстремального эксперимента. ПФЭ и ДФЭ в применении к задачам физической химии.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используются следующие инновационные подходы:

эвристический подход, который предполагает:

- осуществление студентами личностно-значимых открытий окружающего мира;
- демонстрацию многообразия решений большинства профессиональных задач и жизненных проблем;
- творческую самореализацию обучающихся в процессе создания образовательных продуктов;
- индивидуализацию обучения через возможность самостоятельно ставить цели, осуществлять рефлексию собственной образовательной деятельности;

практико-ориентированный подход, который предполагает:

- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- освоение содержание образования через решения практических задач;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

метод учебной дискуссии, который предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме.

Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

методы и приемы развития критического мышления, которые представляют собой систему, формирующую навыки работы с информацией в процессе чтения и письма; понимании информации как отправного, а не конечного пункта критического мышления.

Методические рекомендации по организации самостоятельной работы

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск и обзор литературы и электронных источников по заданной проблеме курса;
 - выполнение домашнего задания;
 - подготовка к коллоквиумам и контрольным работам.

Для выполнения самостоятельной работы обучающиеся также могут воспользоваться материалами созданного на портале educhem.bsu.by курса «Теория эксперимента».

Примерный перечень вопросов к зачету

- 1. Случайные величины. Классификация ошибок измерений. Абсолютная и относительная погрешность.
 - 2. Оценка погрешностей функций приближенных аргументов.
- 3. Распределение случайных величин. Функция распределения и плотность распределения случайной величины.
- 3. Числовые характеристики случайной величины. Свойства математического ожидания и дисперсии. Нормированная случайная величина.
- 4. Нормальное и стандартное распределения случайной величины. Функция Лапласа. Задача об абсолютном отклонении.
- 5. Генеральная совокупность и случайная выборка. Выборочная функция распределения. Гистограммы. Понятие об оценках параметров генерального распределения.
 - 6. Метод максимального правдоподобия.
- 7. Оценка математического ожидания и дисперсии нормально распределенной случайной величины. Дисперсия среднего серии измерений.
- 8. Доверительные интервалы и доверительная вероятность, уровень значимости.
- 9. Проверка статистических гипотез, критерии значимости, ошибки первого и второго рода.
- 10. Построение доверительного интервала для математического ожидания непосредственно измеряемой величины. Распределение Стъюдента.
 - 11. Оценка случайной и суммарной ошибки косвенных измерений.
- 12. Оценка дисперсии нормально распределенной случайной величины.
 - 13. Сравнение двух дисперсий. Распределение Фишера.
- 14. Определение дисперсии по текущим измерениям. Сравнение нескольких дисперсий.
 - 15. Сравнение двух средних. Расчет средневзвешенного значения.
- 16. Проверка однородности результатов измерений. Сравнение выборочного распределения и распределения генеральной совокупности. Критерии согласия Пирсона и Колмогорова.

- 17. Системы случайных величин. Функция и плотность распределения системы двух случайных величин. Условные законы распределения.
- 18. Стохастическая связь. Ковариация. Коэффициент корреляции. Регрессия.
- 19. Выборочный коэффициент корреляции. Проверка гипотезы об отсутствии корреляции.
 - 20. Приближенная регрессия. Метод наименьших квадратов.
- 21. Линейная регрессия от одного параметра. Регрессионный анализ. Проверка адекватности приближенного уравнения регрессии эксперименту.
- 22. Регрессионный анализ. Оценка значимости коэффициентов уравнения регрессии. Оценка доверительного интервала для искомой функции.
- 23. Регрессионный анализ. Оценка тесноты нелинейной связи. Аппроксимация. Параболическая регрессия. Приведение некоторых функциональных зависимостей к линейному виду.
 - 24. Регрессионный анализ. Метод множественной корреляции.
- 25. Задачи дисперсионного анализа. Однофакторный дисперсионный анализ.
 - 26. Двухфакторный дисперсионный анализ.
 - 27. Планирование эксперимента при дисперсионном анализе.
- 28. Постановка задачи при планировании экстремальных экспериментов.
- 29. Полный факторный эксперимент типа 2²: матрица планирования, вычисление коэффициентов уравнения регрессии.
 - 30. Матрица планирования полного факторного эксперимента типа 2³.
- 31. Проверка значимости коэффициентов и адекватности уравнения регрессии, полученных при обработке результатов $\Pi\Phi \ni 2^2$ и 2^3 .
 - 32. Дробный факторный эксперимент. Планы типа 2^{k-1}.
- 33. Оптимизация методом крутого восхождения по поверхности отклика.

протокол согласования учебной программы уо

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Физическая химия	Кафедра физической химии и электрохимии	Предложения отсутствуют	Рекомендовать к утверждению учебную программу (протокол № 15 от 19.06.2025)

Заведующий кафедрой физической химии и электрохимии, д.х.н., профессор

19.06.2025

Е.А.Стрельцов

дополнения и изменения к учебной программе уо

па	/ упебици гол
на	/ учебный год

па у чеопын тод					
№ п/п	Дополнения и и	зменения	Основание		
Vчебь	ная программа пересмотр	рена и олобрена н	а заселании кафелры		
			от 202_ г.)		
(назва	ние кафедры)				
Завед	ующий кафедрой				
THE					
	ГРЖДАЮ г факультета				
	_ -				