Ф23

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭИ им. А.Д. Сахарова БГУ

О. И. Родькин

2024

Регистрационный № УД-1543-24 /уч.

ОПТИКА

Учебная программа учреждения образования по учебной дисциплине для специальности:

7-07-0533-03 Ядерная и радиационная безопасность

Учебная программа составлена на основе ОСВО 7-07-0533-03-2023 от 10.08.2023 и учебного плана учреждения высшего образования для специальности 7-07-0533-03 Ядерная и радиационная безопасность Nolemode 161-23/уч. от 07.04.2023

СОСТАВИТЕЛИ:

Н. В. Пушкарев, доцент кафедры общей и медицинской физики учреждения образования «Международный государственный экологический институт им. А.Д. Сахарова» БГУ, кандидат физико-математических наук, доцент

А.А. Луцевич, доцент кафедры общей и медицинской физики учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат педагогических наук, доцент;

В.П. Зорин, доцент кафедры общей и медицинской физики учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат биологических наук, доцент;

РЕЦЕНЗЕНТЫ:

Кафедра физико-математических дисциплин Института информационных технологий Белорусского государственного университета информатики и радиоэлектроники;

В. А. Иванюкович, доцент кафедры информационных технологий в экологии и медицине учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:
Кафедрой общей и медицинской физики учреждения образования
«Международный государственный экологический институт им. А. Д
Сахарова» Белорусского государственного университета (протокол
№от2024);
Научно-методическим советом учреждения образования «Международный
государственный экологический институт им. А. Д. Сахарова» Белорусского

OT

2024)

государственного университета (протокол №

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Оптика представляет собой неотъемлемую часть базового курса физики и направлена на изучение взаимодействия электромагнитного излучения оптического диапазона с веществом, а также на ознакомление с основными направлениями его применения в медицине. Данная дисциплина обширный объем экспериментальных опирается данных, интерпретации которых разнообразные теоретические используются подходы, основанные как на законах классической теории электромагнетизма, так и на квантовых представлениях. Дисциплина «Оптика» необходима для изучения специальных дисциплин (дозиметрия, материаловедение радиохимия, теплотехника, технология конструкционных материалов, кинетика и динамика ядерных реакторов и др.).

Цель учебной дисциплины — формирование целостного представления о физической картине окружающего мира, взаимосвязи различных физических процессов и понимании закономерностей эволюции физических систем.

Методология курса основана на последовательном изложении материала основных свойств классической модели световой волны, законов ее распространения и взаимодействия в различных средах; первичных квантовых представлений о природе света и их использования в интерпретации явлений и процессов, лежащих в основе современных оптических систем и устройств.

Задачи учебной дисциплины:

- формирование представлений о методах построения моделей основных физических процессов в области взаимодействия оптического излучения с веществом;
- изучение и понимание сущности основных оптических законов и закономерностей;
- понимание принципов преемственности и соответствия в изучении оптических явлений и необходимости использования адекватного языка описания по мере усложнения изучаемых явлений;
- освоение методов экспериментальной деятельности по установлению основных закономерностей оптических явлений;
- развитие умений и навыков по применению полученных знаний для решения конкретных теоретических и практических задач в области оптики.

Обучающийся должен владеть следующими компетенциями: БПК-7. Применять законы волновой и геометрической оптики, закономерности взаимодействия оптического излучения с веществом для решения исследовательских задач.

В результате изучения раздела физики «Оптика» студент должен знать:

- основы электромагнитной теории света;
- явления интерференции и дифракции;

- принципы генерации света;
- приемы использования явлений интерференции, дифракции, поляризации, рассеяния света при изучении биологических материалов;
- основные направления применения лазеров в медицине;

уметь:

- решать задачи геометрической и физической оптики;
- анализировать практически важные схемы интерференции и дифракции;

владеть:

- методами экспериментальных исследований оптических явлений;
- основными методами медицинской микроскопии;
- методами обработки результатов экспериментальных исследований;
- математическими методами решения задач по оптике.

Изучение дисциплины рассчитано на 216 ч; аудиторных часов 106, из которых: лекции – 40 ч, практические занятия – 40 ч; лабораторные занятия – 26 ч.

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – зачет и экзамен в IV семестре.

Трудоемкость дисциплины составляет 6 зачетных единиц.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Введение

Электромагнитная природа света. Шкала электромагнитных волн. Характеристика оптического диапазона электромагнитных волн. Особенности видимого диапазона.

Место оптики в физической науке и ее роль в научно-техническом прогрессе.

2. Свойства электромагнитных волн оптического диапазона в однородной изотропной среде

Уравнения Максвелла. Граничные условия. Волновое уравнение. Плоская монохроматическая волна. Скорость электромагнитной волны. Сферические монохроматические сходящиеся и расходящиеся волны.

Плотность потока энергии и импульса электромагнитных волн. Вектор Пойнтинга.

Суперпозиция электромагнитных волн. Понятие о преобразовании Фурье.

Немонохроматические волны и их представление.

Поляризация электромагнитных волн. Виды поляризации. Число независимых поляризаций. Волна с круговой или эллиптической поляризацией как суперпозиция волн с линейными поляризациями и линейно поляризованная волна как суперпозиция волн с круговой поляризацией. Степень поляризации. Закон Малюса.

Распространение света в однородной изотропной диэлектрической среде. Законы преломления и отражения. Поляризация света при отражении и преломлении на границе двух диэлектриков. Формулы Френеля. Закон Брюстера. Фазовые соотношения при отражении и преломлении света на границе двух диэлектриков.

Фотометрия. Фотометрические энергетические и визуальные характеристики и единицы излучения. Функция видности.

3. Геометрическая оптика

Геометрическая оптика как предельный случай волновой оптики. Основные законы геометрической оптики. Принцип Ферма. Преломление света сферической поверхностью. Нулевой инвариант Аббе. Центрированная оптическая система и ее кардинальные элементы. Зеркала. Тонкие линзы. Построение изображений в оптических системах. Аберрации оптических систем (сферическая, хроматическая, кома, астигматизм, дисторсия). Простейшие оптические приборы и их применение в медицине.

4. Интерференция света

Интерференция гармонических колебаний. Когерентность. Интерференция волн. Видимость интерференционной картины. Осуществление когерентных колебаний в оптике. Интерференционные схемы. Влияние размеров источника света на видимость интерференционной

картины. Интерференция немонохроматического света. Временная и пространственная когерентность. Стоячие волны.

Интерференция в тонких пленках. Полосы равной толщины и равного наклона. Кольца Ньютона.

Двухлучевые интерферометры. Интерферометр Жамена. Интерферометр Майкельсона. Интерферометр Маха – Цендера.

Многолучевые интерферометры. Учет многократных отражений в многолучевых интерферометрах. Интерферометр Фабри-Перо. Пластинка Люммера – Герке.

Применение интерференции. Просветление оптики, контроль качества оптических поверхностей, измерение с высокой точностью показателей преломления веществ. Интерференционные фильтры. Интерференционная спектроскопия. Применение явления интерференции в медицине.

5. Дифракция света

Принцип Гюйгенса — Френеля. Метод зон Френеля. Зоны Френеля. Спираль Френеля. Зонная пластинка. Дифракция Френеля на простейших преградах: круглом отверстии, круглом диске. Пятно Пуассона. Дифракция на краю полубесконечного экрана. Спираль Корню. Недостатки метода зон Френеля.

Дифракция Фраунгофера. Дифракция Фраунгофера на одной щели. Дифракционная решетка. Фазовые и амплитудно-фазовые решетки. Дифракция света на непрерывных периодических и непериодических структурах. Дифракция на ультразвуковых волнах.

Дифракция рентгеновского излучения. Условие Вульфа – Брэгга.

Спектральные приборы, их принципиальная схема и классификация.

Характеристики спектральных приборов. Угловая и линейная дисперсии, разрешающая способность, дисперсионная область. Разрешающая способность оптических приборов.

Применение явления дифракции в медицине.

Физические основы метода голографической записи изображений. Схемы записи и восстановления тонкослойных голограмм. Схемы записи и восстановления толстослойных голограмм. Получение цветных объемных изображений. Особенности голограмм как носителей информации. Применение голограмм в медицине.

6. Распространение света в анизотропной среде

Описание анизотропных сред. Тензор диэлектрической проницаемости.

Зависимость лучевой скорости от направления распространения. Эллипсоид лучевых скоростей. Плоскости поляризации волн, распространяющихся в анизотропной среде. Оптическая ось. Одноосные и двуосные кристаллы.

Двойное лучепреломление. Обыкновенный и необыкновенный лучи в одноосных кристаллах. Построение Гюйгенса для одноосных кристаллов.

Поляризация при двойном лучепреломлении. Поляризационные приборы. Полихроизм. Поляроидные пленки.

Интерференция поляризованных волн при прохождении через кристаллы. Кристаллическая пластинка в четверть, половину и в целую длину волны. Анализ состояния поляризации света. Цвета кристаллических пластинок.

Вращение плоскости поляризации в кристаллических телах и аморфных веществах. Элементарная теория вращения плоскости поляризации. Оптическая изометрия. Вращение плоскости поляризации в магнитном поле.

Искусственная анизотропия, создаваемая деформациями, электрическим и магнитным полями. Эффект Керра. Эффект Коттона – Мутона. Эффект Поккельса.

Использование явлений поляризации света и вращения плоскости поляризации при исследовании биологических тканей.

7. Взаимодействие света с веществом

Дисперсия света. Нормальная и аномальная дисперсия света. Методы измерения дисперсии. Электронная теория дисперсии света. Формула Лоренц – Лоренца. Удельная рефракция. Фазовая и групповая скорости света. Формула Релея. Применение дисперсии в анализе биологических образцов.

Поглощение света. Закон Бугера. Спектры поглощения.

Рассеяние света. Опыты Тиндаля. Рассеяние Релея и рассеяние Ми. Молекулярное рассеяние света. Физическая сущность рассеяния Мандельштама — Бриллюэна и комбинационного рассеяния.

Применение поглощения и рассеяния света в медицине.

8. Квантовые представления о природе света

Тепловое излучение. Правило Прево. Закон Кирхгофа. Абсолютно черное тело. Поглощательная и излучательная способность нагретого тела. Формула Вина. Закон смещения Вина. Формула Релея — Джинса. Формула Планка для теплового излучения. Приемники теплового излучения (пирометры).

Квантовая природа света. Опыт Боте. Фотоэффект. Законы фотоэффекта и их обоснование. Уравнение Эйнштейна. Красная граница фотоэффекта. Фотоэлектрические приемники света (фотоэлементы, фотоумножители, фотодиоды и электронно-оптические преобразователи).

Фотобиологические процессы. Понятие о фотобиологии и фотомедицине.

Давление света, его открытие и объяснение с точки зрения корпускулярной и волновой теорий.

Опыт Комптона. Элементарная теория эффекта Комптона.

9. Спектры атомов и молекул. Люминесценция

Естественная ширина спектральной линии. Уширение спектральной линии. Однородное и неоднородное уширение.

Линейчатые, полосатые и сплошные спектры молекул.

Виды люминесценции и ее классификация. Характеристики люминесценции: спектр поглощения, спектр люминесценции, квантовый выход, длительность, поляризация люминесценции.

Эффект Зеемана. Элементарная теория эффекта Зеемана. Связь эффекта Зеемана с эффектом Фарадея.

10. Усиление и генерация света

Спонтанное и вынужденное излучение. Коэффициенты Эйнштейна. Условие усиления. Зависимость населенности энергетических уровней от плотности излучения. Инверсная населенность уровней.

Лазеры. Принципиальная схема лазера. Типы лазеров. Непрерывные и импульсные лазеры.

Свойства лазерного излучения. Применение лазеров в медицине.

11. Нелинейные явления в оптике

Нелинейное отражение света.

Генерация гармоник.

Самофокусировка и самодефокусировка.

Многофотонные процессы.

12. Оптика движущихся сред

Аберрация света. Опыт Физо. Эффект Доплера. Поперечный эффект Доплера.

Оптические измерения в неинерциальных системах отсчета.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ (очная (дневная) форма получения высшего образования)

КИ	Количество аудиторных часов					
Номер раздела, темы, занятия	Название раздела, темы	Лекции	Практические (семинарские) занятия	Лабораторные занятия	Иное	Формы контроля знаний
1	2	3	4	5	6	7
1	Введение	2			метод. пособие	опрос
2	Свойства электромагнитных волн оптического диапазона в однородной изотропной среде	4	6	4	метод. пособие	сам. раб, коллоквиум
3	Геометрическая оптика	4	6	6	метод. пособие	опрос, контр. работа
4	Интерференция света	4	6	4	метод. пособие	сам. раб, конт. раб.
5	Дифракция света	6	6	4	метод. пособие	сам. раб, конт. раб.
6	Распространение света в анизотропной среде	4	4		метод. пособие	сам. раб, опрос
	Контрольная работа №1		2			
7	Взаимодействие света с веществом	4	2		метод. пособие	сам. раб, опрос
8	Квантовые представления о природе света	4	4	4	метод. пособие	сам. раб, коллоквиум
9	Спектры атомов и молекул. Люминесценция	2		4	метод. пособие	опрос
10	Усиление и генерация света	2			метод. пособие	опрос
11	Нелинейные явления в оптике	2			метод. пособие	опрос
12	Оптика движущихся сред	2	2		метод. пособие	сам. раб, конт. раб.
	Контрольная работа №2		2			
	ВСЕГО			26		

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

- 1. Бондарев, Б. В. Курс общей физики : учеб. пособие : в 3 кн. Кн. 1. Электромагнетизм. Оптика. Квантовая физика / Б. В. Бондарев, Н. П. Калашников, Г. Г. Спирин. Изд. 2–е, стер. Минск : Высш. шк., 2005. 438 с.
- 2. Гершензон, Е. М. Оптика и атомная физика : учеб. пособие для ВУЗов / Е. М. Гершензон, Н. Н. Малов, А. Н. Мансуров. М. : Изд–й центр "Академия", 2000.-408 с.
- 3. Кузнецов, С. И. Физика : Оптика. Элементы атомной и ядерной физики. Элементарные частицы : учеб. пособие для ВУЗов / С. И. Кузнецов. М. : Юрайт, 2018. 301 с.
- 4. Луцевич, А. А. Оптика и квантовая физика / А. А. Луцевич, В. Ф. Малишевский. Минск : МГЭИ им. А. Д. Сахарова БГУ, 2022. 240 с.
- 5. Макаренко, Г. М. Физика : учеб. пособие : в 3 т. Т. 3. Оптика. Элементы квантовой физики / Г. М. Макаренко. Минск : Изд—во "Дизайн ПРО", 1998. 208 с.
- 6. Оптика. Решение задач : учеб. пособие / Л. И. Буров, А. С. Горбацевич, И. А. Капуцкая [и др.] ; под ред. Л. И. Бурова. Минск : Выш. шк., 2018.-334 с.
- 7. Сивухин, Д. В. Общий курс физики : учеб. пособие : в 5 т. Т. 4. Оптика / Д. В. Сивухин. 3-е изд., стер. М. : ФИЗМАТЛИТ , 2006. 792 с.
- 8. Ташлыкова-Бушкевич, И. И. Физика: учебник: в 2 ч. Ч. 2. Оптика. Квантовая физика. Строение и физические свойства вещества / И. И. Ташлыкова-Бушкевич. Минск: Выш. шк., 2014. 232 с.

Дополнительная

- 9. Зисман, Г. А. Курс общей физики : учебное пособие : в 3 томах / Г. А. Зисман, О. М. Тодес. 7-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Том 3 : Оптика. Физика атомов и молекул. Физика атомного ядра и микрочастиц 2019.-504 с.
- 10. Иродов, И. Е. Задачи по общей физике : учебное пособие для вузов / И. Е. Иродов. 18-е изд., стер. Санкт-Петербург : Лань, 2021. 420 с.
- 11. Иродов, И. Е. Квантовая физика. Основные законы : учебное пособие / И. Е. Иродов ; художник Н. А. Лозинская, Н. А. Новак. 8-е изд. Москва : Лаборатория знаний, 2021. 261 с.
- 12. Можаров, Γ . А. Основы физической оптики : учебное пособие для вузов / Γ . А. Можаров. Санкт-Петербург : Лань, 2021. 196 с.

- 13. Савельев, И. В. Курс общей физики : учебное пособие для вузов : в 5 томах / И. В. Савельев. 6-е изд., стер. Санкт-Петербург : Лань, 2022 Том 4 : Волны. Оптика 2022. 252 с.
- 14. Фриш, С. Э. Курс общей физики : учебник : в 3 томах / С. Э. Фриш, А. В. Тиморева. 10-е изд. Санкт-Петербург : Лань, 2021 Том 3 : Оптика. Атомная физика 2021. 656 с.
- 15. Сивухин, Д. В. Общий курс физики: учеб.пособие для студентов физических специальностей вузов. в 5т. / Д. В. Сивухин. М. : Физматлит, 2017. 376 с.
- 16. Трофимова, Т. И. Физика: учебник для инженерно-технических специальностей вузов / Т. И. Трофимова. М.: Академия, 2017. 557 с.
- 17. Трофимова, Т. Н. Курс физики / Т. Н. Трофимова. М. : Высш. шк, 1990. 479 с.

Инновационные подходы и методы преподавания учебной дисциплины

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Эффективность самостоятельной работы студентов целесообразно проверять в ходе текущего и итогового контроля знаний в форме устного опроса, коллоквиумов, контрольных работ по темам и разделам курса (модуля).

Перечень рекомендуемых средств диагностики

С целью диагностики знаний, умений и навыков студентов по данной дисциплине рекомендуется использовать:

- 1) индивидуальные задания;
- 2) контрольные работы;
- 3) самостоятельные работы;
- 4) коллоквиумы по пройденному теоретическому материалу;
- 5) устный опрос в ходе практических занятий;
- 6) проверку конспектов лекций студентов;
- 7) тестирование, включая компьютерное.

Рекомендуемые темы практических занятий

- 1. Плоские электромагнитные волны.
- 2. Поляризация электромагнитных волн. Отражение и преломление света. Формулы Френеля.
- 3. Фотометрические величины.
- 4. Геометрическая оптика.
- 5. Интерференция света.
- 6. Дифракция света.
- 7. Распространение света в анизотропной среде. Физические принципы получения и анализа поляризованного света.
- 8. Вращение плоскости поляризации. Оптическая изомерия.
- 9. Дисперсия, рассеяние и поглощение света.
- 10. Равновесное тепловое излучение.
- 11. Фотоэффект.
- 12. Комптон-эффект.
- 13. Оптические явления в движущихся средах.

Перечень тем лабораторных занятий

- 1. Определение показателя преломления стекла.
- 2. Изучение оптических характеристик рассеивающих (отрицательных) тонких линз.
 - 3. Рефрактометрический анализ растворов.
 - 4. Определение радиуса кривизны линзы с помощью колец Ньютона.
 - 5. Изучение дифракции света.
 - 6. Экспериментальная проверка закона Малюса.
- 7. Определение концентрации оптически активных веществ с помощью поляриметра.
- 8. Определение концентрации окрашенных растворов с помощью спектрофотометра.
 - 9. Изучение законов теплового излучения.
 - 10. Изучение внешнего фотоэффекта.

Протокол согласования учебной программы

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласование с другими дисциплинами не требуется			