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Вейвлеты нашли применение в обработке сигналов и анализе изображений. Они 

позволяют извлекать важную информацию из сигнала, формируя его аппроксимацию 

и детализационные компоненты, каждая из которых вдвое короче исходного сигнала. 

Затем возможно восстановление исходного сигнала. 

Тем не менее, вейвлет-преобразование редко используется в нейронных сетях из-за 

сложности реализации. Мы предлагаем обучаемые модули на PyTorch для вейвлет-

преобразований и функций потерь, которые могут применяться для построения специ-

ализированных вейвлетов. 

 

Ключевые слова: вейвлеты; дискретное вейвлет-преобразование; обратное дис-

кретное вейвлет-преобразование; DWT; IDWT; нейронные сети. 

 

WAVELET NEURAL NETWORKS 

 

I. Baroŭski 
 

Belarusian State University, Belarus, Minsk, iljabarouski@gmail.com 

 
Wavelets have found usage in signal processing and image analysis. They can extract 

important information from the signal, producing its approximation and details components 

both half the length of the original signal. Then the original signal can be reconstructed. 

 Nevertheless, wavelet transform is not widely used in neural networks because of  

complications in implementation. We propose trainable PyTorch modules for wavelet  

transforms and loss functions which can be used for construction of specific wavelets. 
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Introduction 
 
Wavelet transform is a signal analysis technique. While Fourier transform 

analyses a signal in the frequency domain, Gabor transform implies Fourier 
analysis to sliding windows of a signal giving analysis in both time and  
frequency domains, wavelet transform analyses a signal in time and frequency  
domains without limitations of windowing. It projects the initial signal into two 
subspaces formed by bases functions: the first one contains the approximation 
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of the signal and the second contains the details. Then the analysis can be  
performed on approximation, dividing it into two components once again. The 
process is called multiresolution analysis. [1] 

In practice, wavelet transform is performed via convolution with two tied 
kernels called scaling and wavelet coefficients (low-pass and high-pass filters), 
where wavelet coefficients are computed from scaling ones. Stride in  
convolution operation is equal to two which gives us the ability to compress the 
signal by the factor of two while preserving signal features. Moreover, unlike 
regular convolution and pooling layers, wavelet transform with kernel size 
4 2k +  is invertible in our implementation. 

 
Method 
 
We propose the trainable wavelet transform blocks based on convolution 

scheme and differentiable padding block for proper size reduction. The kernels 
can be trained via special weight regularization loss functions, based on wavelet 
constraints, or be provided by the user either with pre-computed kernels or with 
wavelet name from the PyWavelets library. 

 

 
Loss Functions 
 
First, we will describe orthonormal wavelets. As said above, used  

convolution kernels are tied: the wavelet kernel 1

0{ }Ni ig −

=  is obtained from the  

scaling one 1

0{ }Ni ih −

= : 1( 1)ii N ig h − −= − . Wavelets kernels should obey the following 

conditions: admissibility (1), orthogonality (2) and regularity (3). [2] 
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From these conditions one can construct loss functions: admissibility (4), 

orthogonality (5) and regularity (6) losses. To be properly minimized, a loss 
function must have a lower bound. To obtain this behavior, each component is 
squared. In regularity condition, the constant multiplier in the left-hand side was 
dropped, but it is used in the loss function to stabilize the optimization process 
as the function grows rapidly, and the constant naturally reduces it. 
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Even having the stabilization multiplier, the regularity loss still grows very 
fast and destabilizes the gradient. The following training technique is proposed. 
The transform is trained to have only P  first vanishing moments, i.e., the  
regularity loss has P  components. If more moments are needed, the component 
for 1P+  moment is added to the loss, the optimizer is set to the initial options 
and the training is proceeded. 

In case of biorthogonal wavelets we have scaling and wavelet kernels 
1

0{ }Ni ih −

=  and 1

0{ }Ni ig −

=  for analysis, synthesis scaling filter ( 1) 1

1 0{ ( 1) }i N

i N i ih g+ −

− − == −  and 

synthesis wavelet filter 1

1 0{ ( 1) }i N

i N i ig h −

− − == − . These kernels should obey the  

following conditions: admissibility (7), orthogonality (8) and regularity (9). [3] 
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These conditions give us the following loss functions constructed with the 

same procedure described above: admissibility (10), orthogonality (11) and  
regularity (12) losses. 
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The three loss functions are combined in a single wavelet loss function: 
 

1 2 3WL WN O R  = + +  

 
where 1 2 3, ,    are weights, each equal to one by default in our implementation, 

, ,WN O R  are (4), (5), (6) for orthonormal wavelets and (10), (11), (12) for 

biorthogonal wavelets. 
The proposed loss functions can be used as weight regularization for  

wavelet blocks as part of the entire training process to obtain specific behaviors 
unique to the data and the problem being solved. 

Padding 
 
The parameters of the convolution operation should be carefully designed 

to obey the relation (13). 
 

2
1

W K P
C

S

− +
+ =  (13)

 
The parameters are input length W , length of kernel K , padding P for each 

side, stride S  and desired output length C . That means K  must be even. We 
implement several extension methods: 

• “constant”: 
10 0 | | 0 0nx x ; 

• “circular”: 
1 1 1 2| |n n nx x x x x x−  ; 

• “replicate”: 
1 1 1| |n n nx x x x x x ; 

• “reflect”: 
3 2 1 1 2| |n n nx x x x x x− − ; 

• “antireflect”: 
1 3 1 2 1 1 2(2 ) (2 ) | | (2 ) (2 )n n n n nx x x x x x x x x x− −− −  − − . 

“circular” is the default method used in wavelet analysis and provides the 
perfect reconstruction, while “antireflect” happens to be the most natural one. 

 
Wavelet Transform Blocks 
 
The main proposed blocks perform one- and two-dimensional multilevel 

wavelet transforms, requiring only the size of a kernel being even (for these 
blocks 2W C= , 2S = , so according to relation (13), ( 2) / 2P K= − ). In  

one-dimensional case convolution with scaling kernel produces approximation 
and convolution with wavelet kernel produces details, then on the next level  
analysis can be performed once again on approximation. In two-dimensional 
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case one-dimensional analysis is first performed on image’s rows and then on 
columns of both approximation and details from the previous step producing 
four components. The next level analysis can be performed on the  
approximation of approximation from the previous level. The most natural  
“antireflect” padding is the default one, because it is better suited for windowed 
signals. 

The one- and two-dimensional inverse wavelet transform (synthesis) 
blocks are provided for kernels of length 4 2k +  (the condition is obtained from 
the relation (13) with W C= , 1S = , the size of the synthesis kernel is half the 
size of the analysis one and the requirement of P  to be an integer). The  
parameters of the inverse transform blocks should be explicitly specified either 
by providing wavelet name from the PyWavelets library or the kernels obtained 
from computing the output of the analysis block with “return_filters” flag on. 
These blocks are also convolutional, but the stride is one and kernels used are 
computed from provided one's by dividing them into kernels with two output 
channels: one kernel’s channel contains reversed weights from odd positions 
and the other — reversed weights from even positions. In one-dimensional case 
the result of convolution of approximation and details with corresponding odd 
kernels are summed up and placed on odd positions in the resulting signal, even 
positions are formed by the same process. In two-dimensional case the analysis 
is reversed in the same way: from final four components approximation and 
details are obtained, and then the original signal is reconstructed from them. 

 
Conclusion 
 
The novel trainable blocks for one- and two-dimensional multi-channel 

wavelet transform were introduced. The inverse wavelet transform blocks for 
wavelets with kernels of size 4 2k +  implemented. The wavelet blocks may be 
trained via proposed loss functions or used with user-defined wavelets. The 
package is posted on PyPi: https://pypi.org/project/waveletnn. Source code is 
available at https://github.com/Scurrra/WaveletNN-PyTorch. 
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