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BeliBneTs HalwM npuMeHeHne B 00pad0TKe CUTHAJIOB M aHaNM3e n300paxkeHnii. OHu
MO3BOJISIIOT M3BJICKATh BKHYIO HH(POPMAIIHIO U3 CHTHaja, (GOPMUPYS €T0 almpOKCUMAIHIO
U JIeTAIN3alMOHHBIE KOMIIOHEHTHI, KaK/Jast U3 KOTOPBIX BABOE KOPOUYE MCXOTHOTO CUTHAIA.
3arem BO3MOKHO BOCCTaHOBJICHHE MCXOJIHOTO CHTHaJA.
Tem HEe MeHee, BelBIeT-IpeoOpPa30BaHUE PEIKO HCIIOJIB3YETCSl B HEHPOHHBIX CETSIX H3-3a
CIIOKHOCTH peanu3anuu. Mbl npearaem odydaembie Moayiu Ha PyTorch mis BeliBier-
npeoOpa3oBaHuil U (PyHKIHI OTEPh, KOTOPBIE MOTYT MPUMEHSATHCS IS IIOCTPOCHUS CIISIH-
ATM3UPOBAHHBIX BEHBIICTOB.

Knrwouesvie cnoga: BeiBIEThl; TUCKPETHOE BEHUBIIET-NIpeoOpa3oBaHue; 0OpaTHOE AMC-
KpeTHoe BeliBneT-npeodpasoanue; DWT; IDWT; neliponnsie ceTu.
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Wavelets have found usage in signal processing and image analysis. They can extract
important information from the signal, producing its approximation and details components
both half the length of the original signal. Then the original signal can be reconstructed.
Nevertheless, wavelet transform is not widely used in neural networks because of
complications in implementation. We propose trainable PyTorch modules for wavelet
transforms and loss functions which can be used for construction of specific wavelets.

Keywords: wavelets; discrete wavelet transform; inverse discrete wavelet transform;
DWT; IDWT; neural networks.

Introduction

Wavelet transform is a signal analysis technique. While Fourier transform
analyses a signal in the frequency domain, Gabor transform implies Fourier
analysis to sliding windows of a signal giving analysis in both time and
frequency domains, wavelet transform analyses a signal in time and frequency
domains without limitations of windowing. It projects the initial signal into two
subspaces formed by bases functions: the first one contains the approximation
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of the signal and the second contains the details. Then the analysis can be
performed on approximation, dividing it into two components once again. The
process is called multiresolution analysis. [1]

In practice, wavelet transform is performed via convolution with two tied
kernels called scaling and wavelet coefficients (low-pass and high-pass filters),
where wavelet coefficients are computed from scaling ones. Stride in
convolution operation is equal to two which gives us the ability to compress the
signal by the factor of two while preserving signal features. Moreover, unlike
regular convolution and pooling layers, wavelet transform with kernel size
4k +2 1is invertible in our implementation.

Method

We propose the trainable wavelet transform blocks based on convolution
scheme and differentiable padding block for proper size reduction. The kernels
can be trained via special weight regularization loss functions, based on wavelet
constraints, or be provided by the user either with pre-computed kernels or with
wavelet name from the PyWavelets library.

Loss Functions

First, we will describe orthonormal wavelets. As said above, used

N-1

convolution kernels are tied: the wavelet kernel {g,}Y,' 1s obtained from the
scaling one {n}",': g =(-1)h,_ . Wavelets kernels should obey the following
conditions: admissibility (1), orthogonality (2) and regularity (3). [2]
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From these conditions one can construct loss functions: admissibility (4),
orthogonality (5) and regularity (6) losses. To be properly minimized, a loss
function must have a lower bound. To obtain this behavior, each component is
squared. In regularity condition, the constant multiplier in the left-hand side was
dropped, but it is used in the loss function to stabilize the optimization process
as the function grows rapidly, and the constant naturally reduces it.
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Even having the stabilization multiplier, the regularity loss still grows very
fast and destabilizes the gradient. The following training technique is proposed.
The transform is trained to have only P first vanishing moments, i.e., the
regularity loss has P components. If more moments are needed, the component
for P+1 moment is added to the loss, the optimizer is set to the initial options
and the training is proceeded.

In case of biorthogonal wavelets we have scaling and wavelet kernels

(h3¥1 and {g}Y;' for analysis, synthesis scaling filter {# =(-1)""g, "' and
synthesis wavelet filter {g, =(-1)'a,_}",'. These kernels should obey the

following conditions: admissibility (7), orthogonality (8) and regularity (9). [3]
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These conditions give us the following loss functions constructed with the
same procedure described above: admissibility (10), orthogonality (11) and
regularity (12) losses.
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The three loss functions are combined in a single wavelet loss function:
Ly, = ALy + 4Ly + AL,

where 4, 4,,4, are weights, each equal to one by default in our implementation,
L, Lo, Lp are (4), (5), (6) for orthonormal wavelets and (10), (11), (12) for
biorthogonal wavelets.

The proposed loss functions can be used as weight regularization for
wavelet blocks as part of the entire training process to obtain specific behaviors

unique to the data and the problem being solved.
Padding

The parameters of the convolution operation should be carefully designed
to obey the relation (13).

W-K+2P
_—+

. 1=C (13)

The parameters are input length w, length of kernel K, padding P for each
side, stride S and desired output length C. That means K must be even. We
implement several extension methods:

o “constant”: 00| x,...x,|00;

o “circular”: x,, x, |x ...x, | x x,;

o “replicate”: x, x,|x, ...x, | x, x,;

o “reflect”™ x, x, |x,...x, | x,, x,,;

o “antireflect”: 2x, —x,) 2x,—x,)|x ...x, |(2x,—x, ) (2x,—x, ,)-

“circular” is the default method used in wavelet analysis and provides the
perfect reconstruction, while “antireflect” happens to be the most natural one.

Wavelet Transform Blocks

The main proposed blocks perform one- and two-dimensional multilevel
wavelet transforms, requiring only the size of a kernel being even (for these
blocks w=2c, s=2, so according to relation (13), P=(K-2)/2). In
one-dimensional case convolution with scaling kernel produces approximation
and convolution with wavelet kernel produces details, then on the next level
analysis can be performed once again on approximation. In two-dimensional
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case one-dimensional analysis is first performed on image’s rows and then on
columns of both approximation and details from the previous step producing
four components. The next level analysis can be performed on the
approximation of approximation from the previous level. The most natural
“antireflect” padding is the default one, because it is better suited for windowed
signals.

The one- and two-dimensional inverse wavelet transform (synthesis)
blocks are provided for kernels of length 4« +2 (the condition is obtained from
the relation (13) with w =c, s =1, the size of the synthesis kernel is half the
size of the analysis one and the requirement of P to be an integer). The
parameters of the inverse transform blocks should be explicitly specified either
by providing wavelet name from the PyWavelets library or the kernels obtained
from computing the output of the analysis block with “return_filters” flag on.
These blocks are also convolutional, but the stride is one and kernels used are
computed from provided one's by dividing them into kernels with two output
channels: one kernel’s channel contains reversed weights from odd positions
and the other — reversed weights from even positions. In one-dimensional case
the result of convolution of approximation and details with corresponding odd
kernels are summed up and placed on odd positions in the resulting signal, even
positions are formed by the same process. In two-dimensional case the analysis
is reversed in the same way: from final four components approximation and
details are obtained, and then the original signal is reconstructed from them.

Conclusion

The novel trainable blocks for one- and two-dimensional multi-channel
wavelet transform were introduced. The inverse wavelet transform blocks for
wavelets with kernels of size 4x+2 implemented. The wavelet blocks may be
trained via proposed loss functions or used with user-defined wavelets. The
package is posted on PyPi: https://pypi.org/project/waveletnn. Source code is
available at https://github.com/Scurrra/WaveletNN-PyTorch.
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