UDC 51 (519.8)
METOA I-KYBUUECKOM PEI'YJAPU3AIIUA
Ian Taii", bo 10?

U Vuueepcumem mexnonoautl JJanaus, Kumaii, JJanans, pangtai@mail dlut.edu.cn
2 Ynusepcumem mexnonoeuit [anans, Kumau, Janans, yubo@dlut.edu.cn

B nanHoli cratbe npeacTaBieH HOBBIM METOJT KyOMUECKOM peryJisipu3aiuu Jyis 3a1a4u
MUHUMU3aLKU 0e3 orpannyeHuil. B kauecTBe peryaspu3yolero 4ieHa UCIoIb3yeTcs cena-

3 3
pabenpHas HOpMaA ||s||3 BMECTO CTaHJAPTHOMI ||s ,» UTO TIO3BOJISIET Gonee dphexTuBHO pe-

IaTh noa3agaud. JJokazaHa cXoJMMOCTh METO/IA U TIOJIyYeHA OIICHKA €ro HauXyIied ute-
parmonnoii cinoxuoctn O(g7) . JIng >ddeKTUBHOrO peleHus Moa3aad KyOHdecKoil pery-
asipusaiu (, TpeyiaraeTcs alrOPUTM C TPeMsl oporamu. [IpoBeIeHbI YMCIICHHBIE JKCIIC-
PUMEHTBI, IEMOHCTPUPYIOIIHE 3P PEKTHBHOCTH MPEIOKEHHOTO METO/IA.

KuroueBble cioBa: kyOuueckas peryisipusanus; riajgKas MUHUMU3alus 0e3 orpaHu-
yeHui; Hopma 1.
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In this paper, a new cubic regularization method for unconstrained minimization is
: 3. 3 o .
introduced. It uses separable ||s||3 instead of ||s||2 as the regularization term, so that it is
possible to solve the subproblems more efficiently. Its convergence is proved and the
worst-case iteration complexity is shown to be O(&7). To solve the (,-cubic regularization

subproblems efficiently, a 3-thresholding algorithm is proposed. Numerical experiments are
done to show the efficiency of the proposed method.
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Introduction

The cubic regularized Newton (CRN) method,

St argumin {mk(s)é £+ gk)TH%Serﬁ%nsnj}, (1.4)
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for solving the unconstrained optimization problem

min f(x) (1.5)
xeR"
where f:R" >R is a twice differentiable function, @, is chosen such that:
VxeR",

S () <my(x=x") (1.6)

and f,, g, H, represent the function value, gradient and the Hessian of 1 at

x*, respectively. The class of methods was systematically studied by Nesterov
and Polyak [1], and the similar idea was independently used by Griewank et al.
[2], in which

T 1 -+
m,(s) = f, +(gk) S+5s Hks+%||s||;, (1.7)

where regular parameters o, and positive definite weight matricies G, are

iteratively chosen to ensure the overestimation property while preserving affine
invariance.

Furthermore, Weiser et al. [3] also pursued the same line of thought as
Griewank et al. with G, =G . If the objective Hessian is globally Lipschitz

continuous, global convergence to second-order critical points and
asymptotically quadratic rate of convergence are also proved. Besides, if the
objective Hessian is globally Lipschitz continuous and positive definite, CRN
method has a better global iteration complexity bound [4] [5], to line-search and
trust region strategies. CRN method addresses the drawback of Newton's
method that can't handle degenerate Hessians and provides an alternative
globalization strategy.

The paper is organized as follows. The (,-cubic regularization method, its

convergence, complexity results are given in Section 2, a 3-thresholding
algorithm for solving the subproblems is given in Section 3, experimental
results are in Section 4 and the conclusions follow in Section 5.

The (,-cubic regularization method.

In this section, we introduce an (,-cubic regularization (/,-CR) method,
prove its convergence and give some complexity results. The (;cubic
subproblem of (,-CR method is as follows:
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mIgl{Ck(s)éﬁ+(gk)Ts+%sTHks+%||s||z}. (1.8)

Using the separable | 5|} instead of inseparable ||s | will ensure that we can

solve the new cubic subproblems more efficiently, although the second term is
inseparable. Then, we give an adaptive (,-CR method in Figure 1. We are now

ready to prove the first convergence result for the method. In particular, we
show that there is a subsequence of { g } converging to zero.

Algorithm 1 £3-cubic regularization method

Input: initial value z°; parameters vo > v, > 1,1 > 72 > m1 > 0, kpmae and My > 0.
For k=0,1,...,knaz, do

1.

Compute a step s* by solving the £3-cubic regularization subproblem such
that

Ck (s*) < Ci (sF).,
where sk = faﬁg’“ is the Cauchy point with

—(g") " Hig" + /((g*) "Hig*)? + 2M|g* 3]l I3

af = arg min Cy (—ag®) =
k gaew i (—ag®)

Mi||g* 13 ’
. Compute
£~ 1 (2 +%)
k= : 5
PR R - Ce(sh)
. Set
. zk + sk, if pp >y,
zF, otherwise;
. Set
[0, My], if pr. > 12, (very successful step)
M1 € ¢ [Me, 1 M), ifm < pr <2, (successful step)
[v1 My, v2My], otherwise; (unsuccessful step)
. If termination criterions are satisfied, then return z* and break;
. If k = k00 without convergence, return failure information.

Fig.1. (,-cubic regularization method.

Theorem 1: Suppose ||H,|, <x, hold for all k>0and «,>0. If {f(xk )} is

bounded below, then

liminfg"| =0. (1.9)

Our next result shows the Q-quadratic asymptotic convergence of the
(,-cubic regularization method.
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Theorem 2: If v C,(s*)=0 and |H(x)-H(y)|, <L, |x-y|, hold for allx,
sufficiently close tox”, x* —x’, ask - and H(x") is positive definite, then g*

converges to zero, and x* to x*, Q-quadratically, as k£ — .
If the subproblem satisfies |V,C,(s*)| <6, ||, then our subsequent result

establishes Q-quadratic asymptotic convergence of the (,-cubic regularization
method.

Theorem 3: If HVSCk (s* )H <0, H g, v.Cc.(s") s* <oand
|Hx)-H()|, <Ly |x-y|, hold for allx,y sufficiently close tox,

x* >x,ask—o and H (x) is positive definite, then g* converges to zero, and

x* to x", Q-quadratically, as k — .
We are now ready to give an improved complexity bound for the (,-cubic

regularization method.
Theorem 4: Let ||H, | <, forall £>0hold, and { /(= )} be bounded below
by fi. . Assume that [g°|>e€, e<(0,1], j <o be the first iteration such that

|¢"*'|<e. Then, the (,-cubic regularization method takes at most

K 2[xe?] (1.10)

successful iterations or equivalently, gradient evaluations, to generate
|g""| <€, where

K4=(f(x0)—flow)/(771a0) and a :{%max(lg,m, 2]/2K3):|1. (1.11)

Additionally, assume that on each very successful iteration {sk} , @,,, 1s chosen

such that @, > 7,0, 7, €(0,1] 1s satisfied. Then
jlg[zcceﬂélq (1.12)

and so the/,-cubic regularization method takes at most K; (successful and

unsuccessful) iterations, and function evaluations, to generate g/ <e, where
1 1 o
K‘C:(l— 0gy3]1<4+/cg, Kp = max(l,y2K3J. (1.13)
logy, logy, @,
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The algorithm for solving the (,-cubic regularization subproblems.

In this section, we consider how to efficiently solve the (,-cubic
regularization subproblems

gﬂi%g{cmk(s)z(gk)Ts+%sT ks+%||s||j}. (1.14)

Employing the first-order optimality conditions, we can obtain
g +Hks+%vq|s||j>:o. (1.15)
Multiplying by any positive parameter ; on both sides of the equation, we have
s+%w||s||§)=s—y(g"+Hks). (1.16)

We denote the operator as:
-1
Russ)=| T+245(D) | (117
which implies

s = [l+%V(”~”j)} (s—,u(gk +Hks)) =R, ,;(s—pu(g" +Hs)) (1.18)

Then we prove the following results on r, , ().
Theorem 5: As a mapping from R" to R, the resolvent operator R, ,.()

is well defined. It is a diagonally nonlinear analytically expressive operator, and
can be specified by

R, u3(8)=(fo s Loy (820 £ s (8 (1.19)
Where
£ () = SEGNIROMS) (1.20)
oM
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With the thresholding representation, the 3-thresholding algorithm to solve
the subproblems can be shown in Figure 2.

Algorithm 2 3-thresholding algorithm

1: Input: parameters p; and jmax; initial values g", Hj., and wg.
2: for j =0,1,...,jmax do

3:
4:

e P>

10:
11:
12:

Compute z = s7~1 — i (g% + Hps771).
fori=1,...,ndo

Sigll(l.)(*l+\/1+2i~'k[l.‘!3,[)

Wi 5

Compute s! =
end for
if termination criteria are satisfied then
return s’; break
end if
if j = jmax and termination criteria is not achieved then
return failure information.
end if

13: end for
14: return s = s’

Fig. 2. 3-threshoding algorithm for solving subproblems.
Experimental results

We now turn our attention to investigating how our methods perform in
practice. We have implemented the [5-cubic regularization method described in
Sction 2. In Figure 3, we present the iteration-count performance profile for

these algorithms.

ps(1): fraction of problems for which method within T of best
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Fig. 3. Performance profiles (computing time) for CR(,, ACR(,, CR-MDM ', CRADMM,

Conclusion

CR3T and CRCD on the CUTEst problems.

In this paper, we have considered a new [3-cubic regularization method for
unconstrained optimization and presented its convergence and complexity
analysis. The method allows for the approximate solution of the key
computational step, and are suitable for large-scale problems. We presented the
[; —thresholding algorithm for solving the subproblems as well as their
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convergence. Encouraging preliminary numerical experiments with small-scale
problems were reported.
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