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В данной статье представлен новый метод кубической регуляризации для задачи 

минимизации без ограничений. В качестве регуляризующего члена используется сепа-

рабельная норма 
3

3
s  вместо стандартной 

3

2
s , что позволяет более эффективно ре-

шать подзадачи. Доказана сходимость метода и получена оценка его наихудшей ите-

рационной сложности 
2( ) −

. Для эффективного решения подзадач кубической регу-

ляризации 3  предлагается алгоритм с тремя порогами. Проведены численные экспе-

рименты, демонстрирующие эффективность предложенного метода. 
 
Ключевые слова: кубическая регуляризация; гладкая минимизация без ограни-

чений; норма ℓ₁. 
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In this paper, a new cubic regularization method for unconstrained minimization is  

introduced. It uses separable 
3

3
s  instead of 

3

2
s  as the regularization term, so that it is  

possible to solve the subproblems more efficiently. Its convergence is proved and the  

worst-case iteration complexity is shown to be 
2( ) −

. To solve the 3 -cubic regularization 

subproblems efficiently, a 3-thresholding algorithm is proposed. Numerical experiments are 
done to show the efficiency of the proposed method.  
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Introduction 

 

The cubic regularized Newton (CRN) method,  
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arg min ( ) ( )
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k k k k
s k k kx x m s f g s s H s s

+  
= + + + + 

 
, (1.4) 
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for solving the unconstrained optimization problem 

 

 min ( )
nx
f x


 (1.5) 

 

where : nf →  is a twice differentiable function, k  is chosen such that: 
nx  , 

 

 ( ) ( )kkf x m x x −  (1.6) 

 

and kf ,
kg , kH  represent the function value, gradient and the Hessian of f  at  

kx , respectively. The class of methods was systematically studied by Nesterov 

and Polyak [1], and the similar idea was independently used by Griewank et al. 

[2], in which 

 

 
31

( ) ( )
2 6 k

k k
k k k G
m s f g s s H s s


= + + + , (1.7) 

 

where regular parameters k  and positive definite weight matricies kG are  

iteratively chosen to ensure the overestimation property while preserving affine 

invariance.  

Furthermore, Weiser et al. [3] also pursued the same line of thought as 

Griewank et al. with kG G= . If the objective Hessian is globally Lipschitz  

continuous, global convergence to second-order critical points and  

asymptotically quadratic rate of convergence are also proved. Besides, if the 

objective Hessian is globally Lipschitz continuous and positive definite, CRN 

method has a better global iteration complexity bound [4] [5], to line-search and 

trust region strategies. CRN method addresses the drawback of Newton's 

method that can't handle degenerate Hessians and provides an alternative  

globalization strategy. 

The paper is organized as follows. The 3 -cubic regularization method, its  

convergence, complexity results are given in Section 2, a 3-thresholding  

algorithm for solving the subproblems is given in Section 3, experimental  

results are in Section 4 and the conclusions follow in Section 5. 

 

The 3 -cubic regularization method.  

 

In this section, we introduce an 3 -cubic regularization ( 3 -CR) method, 

prove its convergence and give some complexity results. The 3 cubic  

subproblem of 3 -CR method is as follows: 
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 (1.8) 

 

Using the separable 3

3|| ||s  instead of inseparable 3

2|| ||s  will ensure that we can 

solve the new cubic subproblems more efficiently, although the second term is 

inseparable. Then, we give an adaptive 3 -CR method in Figure 1. We are now 

ready to prove the first convergence result for the method. In particular, we 

show that there is a subsequence of  kg  converging to zero.  

 
Fig.1. 3 -cubic regularization method. 

 

Theorem 1: Suppose 21kH   hold for all 0k  and 2 0  . If ( ) kf x  is 

bounded below, then 

 .l 0i nfmi k

k
g

→
=  (1.9) 

 

Our next result shows the Q-quadratic asymptotic convergence of the  

3 -cubic regularization method. 
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Theorem 2: If ( ) 0k

s kC s =  and  
1 3

( ) ( ) HH x H y L x y−  −  hold for all x , y  

sufficiently close to *x , *,  as kx x k→ →  and ( )*H x  is positive definite, then kg  

converges to zero,  and kx  to *x , Q-quadratically, as k→ . 

If the subproblem satisfies ( )k k

s k kC s g  , then our subsequent result  

establishes Q-quadratic asymptotic convergence of the 3 -cubic regularization 

method.  

Theorem 3: If ( )k k

s k kC s g  , ( ) 0k k

s kC s s  and 

1 3
( ) ( ) HH x H y L x y−  −  hold for all x , y  sufficiently close to *x , 

*,  as kx x k→ →  and ( )*H x  is positive definite, then kg converges to zero,  and 

kx  to *x , Q-quadratically, as k→ . 
We are now ready to give an improved complexity bound for the 3 -cubic  

regularization method. 

Theorem 4: Let 2kH   for all 0k  hold, and  ( ) kf x  be bounded below 

by lowf . Assume that 0g  , (0,1] , 1j   be the first iteration such that 

1 1jg +
 . Then, the 3 -cubic regularization method takes at most 

 

 2

1 4

sK  −    (1.10) 

 

successful iterations or equivalently, gradient evaluations, to generate 
1 1jg +

 , where 

 ( )( ) ( ) ( )
1

0

4 low 1 C C 2 0 2 3

9
/  and  max , 2 , 2

2
f x f      

−

 
= − =  

 
. (1.11) 

 

Additionally, assume that on each very successful iteration  ks , 1k +  is chosen 

such that 1 3k k  +  , 3 (0,1]   is satisfied. Then 

 

 2

1 C 1j K −     (1.12) 

 

and so the 3 -cubic regularization method takes at most 𝐾1 (successful and  

unsuccessful) iterations, and function evaluations, to generate 1 1jg +
 , where 

 

 
2

3 2 3
C 4 C C

1 1 0

log 1
1 , max 1, .

log log

u u  
   

  

  
= − + =   
   

 (1.13) 
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The algorithm for solving the 3 -cubic regularization subproblems. 

 

In this section, we consider how to efficiently solve the 3 -cubic  

regularization subproblems 
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Employing the first-order optimality conditions, we can obtain 

 

 
3

3
( ) 0.

6

k k
kg H s s


+ +  =  (1.15) 

 

Multiplying by any positive parameter   on both sides of the equation, we have 

 

 
3

3
( ) ( ).

6

kk
ks s s g H s

 
+  = − +  (1.16) 

 

We denote the operator as: 

 

 
1

3

, ,3 3
( ) ( ) ,

6k

kR I 

 
−

 
 = +   

 
 (1.17) 

 

which implies 

 

 ( )
1

3

, ,33
( ) ( ) ( ( ))

6 k

k kk
k ks I s g H s R s g H s 

 
 

−

 
= +   − + = − + 
 

 (1.18) 

 

Then we prove the following results on 
, ,3 ( )
k

R   . 

Theorem 5: As a mapping from n  to , the resolvent operator 
, ,3 ( )
k

R    

is well defined. It is a diagonally nonlinear analytically expressive operator, and 

can be specified by 

 

 , ,3 , ,3 1 , ,3 2 , ,3( ) ( ( ), ( ), , ( ))
k k k k nR s f s f s f s       = . (1.19) 

 

Where 

 

 i k i

, ,3

sign(s )(-1+ 1+2 |s |)
( ) , 1, , .

k i

k

f s i n 

 

 
= =   (1.20) 
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With the thresholding representation, the 3-thresholding algorithm to solve 

the subproblems can be shown in Figure 2. 

 
Fig. 2. 3-threshoding algorithm for solving subproblems. 

Experimental results 

 

We now turn our attention to investigating how our methods perform in 

practice. We have implemented the 𝑙3-cubic regularization method described in 

Sction 2. In Figure 3, we present the iteration-count performance profile for 

these algorithms. 

 
Fig. 3. Performance profiles (computing time) for 2CR , 2ACR , CR-MDM , CRADMM, 

CR3T and CRCD on the CUTEst problems. 

 

Conclusion 

 

In this paper, we have considered a new 𝑙3-cubic regularization method for  

unconstrained optimization and presented its convergence and complexity  

analysis. The method allows for the approximate solution of the key  

computational step, and are suitable for large-scale problems. We presented the 

𝑙3 −thresholding algorithm for solving the subproblems as well as their  
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convergence. Encouraging preliminary numerical experiments with small-scale 

problems were reported. 
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