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For a one-dimensional wave equation, we consider a mixed problem in a curvilinear 
half-strip. The initial conditions have a first-kind discontinuity at one point. The mixed 
problem models the problem of a longitudinal impact on a finite elastic rod with a movable 
boundary. We construct the solution using the method of characteristics in an explicit 
analytical form. For the problem in question, we prove the uniqueness of the solution and 
establish the conditions under which its classical solution exists. 
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Statement of the problem 
 

In the curvilinear domain        ,  :  0, ,Q t x t x t l      , where l  is a 

positive real number, of two independent variables   2,t x Q  R , for the 

wave equation 

 

       2 2 2 , , , , ,t xa u t x f t x t x Q          (1) 

 
we consider the following mixed problem with the initial conditions 
 

       
 

 
0, 0, ,

0, , 0, 0,
, ,

t

x l
u x x u x x x l

v x l

 
      


,      (2) 
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and the boundary conditions  

 

    1,u t t t   ,         2

2,t xb u t l t     ,     0, ,t       (3) 

 

where a, v, and b are real numbers, 0a   for definiteness, f  is a function given 

on the set Q ,  and  are some real-valued functions defined on the segment 

 0,l , and 1  and 2  are some real-valued functions defined on the half-line 

 0, .  We also assume that  

 

  1 0,C  ,    ,D t a a    for all  0,t  ,  lim
t

t at


   ,    (4) 

 
and the curves  x t   and x l  do not intersect.  

Problem (1)–(3) models the following problem from the wave theory of 
longitudinal impact [1]. Suppose that an elastic finite homogeneous rod of 
constant cross-section, whose left moving boundary  x t   is fixed, is 

subjected at the initial moment 0t   to an impact at the end x l  by a load that 
sticks to the rod. We assume that an external volumetric force acts on the rod 
and that both the displacements and the rate of change of the displacements of 
the rod at the initial moment are nonzero. In addition, we ignore the weight of 
the rod and any potential vertical displacements, and we assume that there are 
no shock waves within the rod. Under these conditions, the displacements 

 ,u t x  of the rod satisfy the mixed problem (1)–(3), where 1a E   , 
1b SEM  , where 0E   is Young's modulus of the rod material, 0   is the 

density of the rod material, 0S   is the cross-sectional area of the rod, 0M   
is the mass of the impacting load, v  is the velocity of the impacting load, 

 1 t  is the external force acting on the end of the rod,  2 t  is the external 

force acting on the end of the rod, divided by the mass of the impacting load, 

and the function f  is the external volumetric force divided by . 

 
Auxiliary functions  
 
Consider the following functions: 
 

   : 0, t t at   е ,       : 0, t t at   е .  (5) 

 

We also need the inverse of the functions   and  , which we will denote as 

Φ and Φ. Specifically, we have:  

 

  Φ t at t    ,    Φ t at t    . 
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These inverse functions exist under the conditions specified in (4). According 
to the inverse function theorem, we derive the following formulas: 
 

     
1

Φ Φ  D t D t a


    ,     0,t  ,         (6) 

        
3

2 2Φ Φ ΦD t D t D t a


       ,     0,t  ,   (7) 

 
It is important to note that the representations in (6) and (7), along with the 

conditions in (4), imply that Φ is an increasing function and Φ is a 

decreasing function. 
 

Main results 
 

We partition the domain Q  according to the following formulas:  

 
        0,0

,  : 0, 0,Q Q t x x at l x at l       ,            (8) 
        1,0

1,  : ,0 0,Q Q t x x at r x at l          ,           (9) 
        0,1

1,  : 0, ,Q Q t x x at l x at l l al        ,             (10) 

        ,

1 1, : , ,
i j

i i j jQ Q t x x at r r x at l al l al   
               , (11) 

 

where 0 0 0r l  ,   1

1 1i i il r a l r

     ,  1Φi ir l al   . From the geometric 

considerations and conditions (4), it is easy to show the correctness of the 

partitioning (8) – (11) of the domain Q .  

In the general case, where   1 0,C l , problem (1)–(3) has no solution 

in the class  2C Q ; in other words, problem (1)–(3) lacks a global classical 

solution defined on the set Q . However, it is possible to define a classical 

solution on a smaller set ΓQ ‚ , where  

 

 

 

1
,

0 max 1,0

Γ ,
i

i j

i j i

Q Q
 

  

 
    
 

‚  

 

that will satisfy Eq. (1) on the set ΓQ ‚  in the standard sense with additional 

conjugation conditions on the set Γ.  
Definition 1. A function u is a classical solution of problem (1)–(3) if it 

is representable in the form 1 2u u u  , where 1u  is a classical solution of 

problem (1)–(3) with 0v   and 2u  satisfies Eq. (1) with 0f   in the domains 
 ,i j

Q ,  0i N ,  0j N , 1i j  , the initial conditions 
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   2 20, 0, 0tu x u x   ,  0,x l , boundary conditions (3) with 1 2 0    , 

and the following matching conditions 
 

  2 2 0[( ) ( ,]) iu u t x r at



     ,  0i N,      (12) 

 2 2 0[( ) ( ,]) iu u t x l al at     ,  0i N,               (13) 

   0

2 2 0( ) ( ) ,][ t tu u t x l al at C v        ,                 (14) 

   
2 2[ ]( ) ( ) ,

i

t t iu u t x l al at C       ,  Eveni N ,     (15) 

 2 2 0[ ]( ) ( ) ,t t iu u t x l al at      ,  Oddi N ,     (16) 

 

where 
 i

C  are some constants determined from physical conditions,  
 

    Even Ω  : Ω 0 mod 2x x x    , 

 
and  

 

    Odd Ω  : Ω 1 mod 2 .x x x     

 
Theorem 1. Let the smoothness conditions  
 

 1f C Q ,      2 0,C l ,      1 0,C l , 

  2

1 0,C   ,      2 0,C   ,      2 0,C   

 
be satisfied. Problem (1) – (3) has a unique solution in the sense of Definition 
1 if and only if the following matching conditions  
 

   1 0 0 0    , 

       1 0 0 0 0 0D D D      , 

       
22 2 2

1 0 0 0D a D D      

         20,0 2 0 0 0 0 0f D D D D       , 

       2 2

2 0 0, 0 0f l bD a D l        

are satisfied. 
Remark 1. The solution to problem (1) – (3) is determined in a non-

unique way, i.e., we have to specify the constants 
 i

C ,  Eveni N .  

Remark 2. According to Theorem 1, any choice of the constants 
 i

C , 

 Eveni N , uniquely determines the solution. 

Remark 3. Suppose    0jD r  ,  Evenj N . Then, we can set 
 j

C v  

and obtain a physically correct solution in Theorem 1. 
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In Remark 3, we introduced the term “physically correct solution.” Let us 
explain it. We call a solution physically correct if it satisfies shock conditions 
that correspond to the original physical statements (see, for example, [2, 
p. 139]). In problem (1)–(3), we can use the property that shock waves 
propagate with the same speed in the elastic rods [3] as demonstrated in [4, p. 
64–66] and [5], but here we must also consider the interaction of shock waves 
with the moving boundary. 

Theorem 2. If we set 
 

   
 

/2
2 1

1 2 1

i
ji

j j

a r
C v

a r



 



 


  , 

 
then a solution of problem (1) – (3) constructed in Theorem 1 is physically 
correct. 

 

Conclusions 
 
In the present report, we have obtained the necessary and sufficient 

conditions under which a unique classical solution of a mixed problem exists 
for the wave equation with discontinuous conditions in a curvilinear half-strip. 
We have proposed a method for constructing solutions to mixed problems for 
hyperbolic equations with discontinuous conditions in curvilinear domains. 
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