МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ ИСПОЛЬЗОВАНИЯ НЕЙРО-СЕТЕЙ ПРИ ОБУЧЕНИИ СТУДЕНТОВ МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

А. В. Ляцкая

Белорусский государственный университет, Минск, Беларусь, Anastasiya.lyackaya@gmail.com

В данной статье рассматриваются особенности использования нейросетевых технологий в процессе обучения математическому анализу. Представлены примеры применения нейросетей, а также сравнительный анализ современных инструментов на основе критериев доступности, интерактивности и эффективности.

Ключевые слова: искусственный интеллект; нейросети; математическое образование; персонализированное обучение; интерактивные образовательные среды.

METHODOLOGICAL FEATURES OF USING NEURAL NETWORKS IN TEACHING STUDENTS OF MATHEMATICAL ANALYSIS

A.V. Liatskaya

Belarusian State University, Minsk, Belarus, Anastasiya.lyackaya@gmail.com

This article examines the features of using neural network technologies in teaching mathematical analysis. Educational examples of using neural networks are presented, as well as a comparative analysis of modern tools based on the criteria of accessibility, interactivity and efficiency.

Keywords: artificial intelligence; neural networks; mathematical education; personalized learning; interactive educational environments.

Введение

Современные технологии искусственного интеллекта (ИИ) играют важную роль в модернизации образовательного процесса, что особенно актуально в контексте математических дисциплин, где требуется глубокий анализ, символьные вычисления и логическая аргументация. Нейросетевые алгоритмы способны автоматизировать сложные вычисления, адаптировать учебные материалы под уровень подготовки студентов и визуализировать абстрактные математические понятия. Включение ИИ в процесс обучения студентов не только повышает эффективность усвоения материала, но и развивает у обучающихся навыки аналитического и

алгоритмического мышления. Особенно актуально использование нейросетей в изучении математического анализа, где требуется не только понимание теоретических аспектов, но и практические навыки решения задач.

Методология исследования

Использование нейросетевых технологий при обучении математическому анализу имеет ряд значительных преимуществ, которые повышают качество образования и облегчают процесс освоения сложных математических понятий.

- 1. Персонализированное обучение. Нейросети анализируют уровень подготовки каждого студента и адаптируют учебный процесс под его потребности. Это позволяет учащимся изучать материал в комфортном темпе, получать задания соответствующей сложности и получать разъяснения, чтобы устранить пробелы в знаниях. Например, студент изучает тему производная функции, и нейросеть (например, Squirrel AI) анализирует его успехи в решении задач. В зависимости от уровня знаний система подбирает задачи на нахождение производных простых и более сложных функций.
- **2. Автоматизированная проверка решений.** ИИ-инструменты, такие как Wolfram Alpha, Symbolab и Mathway, позволяют мгновенно проверять правильность решений, выявлять ошибки и давать подробные объяснения. Это значительно облегчает процесс обучения и помогает студентам лучше усваивать изучаемый материал.
- **3.** Визуализация математических понятий. Математический анализ включает такие темы как пределы, производные и интегралы, которые могут быть трудными для понимания. Нейросетевые технологии позволяют строить интерактивные графики функций, анимации и 3D-модели, что делает процесс обучения более наглядным и интуитивно понятным. Например, для того, чтобы проанализировать понятие предела функции студент использует Desmos, который визуализирует функцию $f(x) = \frac{\sin x}{x}$ и ее поведение на интервале от 0 до 10, наблюдая, как функция стремится к нулю при $x \to \infty$.
- **4.** Развитие аналитического и алгоритмического мышления. Работа с нейросетевыми инструментами помогает студентам развивать аналитические навыки мышления, поскольку они учатся не просто решать уравнения, а анализировать различные методы решения и интерпретировать результаты.
- **5.** Доступ к неограниченному количеству задач и тестов. Нейросети способны автоматически генерировать индивидуальные задания,

варьируя условия, сложность и методы решения. Это исключает шаблонное заучивание и позволяет студентам развивать гибкость мышления.

- **6.** Обратная связь в режиме реального времени. Использование ИИ в обучении позволяет студентам получать мгновенные объяснения и разбор ошибок. Вместо того чтобы ждать проверки преподавателя, они могут сразу увидеть, где допущена ошибка, и исправить ее.
- 7. Интерактивные тренажеры и симуляторы. Нейросетевые технологии позволяют создавать адаптивные тренажеры, где студенты могут решать задачи и получать подсказки по мере необходимости.
- **8.** Оптимизация работы преподавателя. ИИ-инструменты могут автоматизировать рутинные задачи, такие как проверка домашних заданий и тестов, что позволяет преподавателям уделять больше внимания объяснению сложных тем и индивидуальной работе со студентами.

Выбор наиболее эффективного инструмента для обучения математическим дисциплинам требует системного подхода к оценке различных нейросетей [1]. Далее представлена сравнительная таблица, иллюстрирующая различия между основными нейросетями.

Компаративный анализ нейросетей

Нейросеть	Функциональность	Ключевые преимущества	Основные ограничения
Wolfram Alpha	Символьные вычисления, решение уравнений, анализ функций	Высокая точность, развитая система автоматического вывода	Ограниченные пояснения методов решения
Symbolab	Пошаговые решения алгебраических задач, интегралов, дифференциальных уравнений	Подробные объяснения каждого шага	Полный доступ к функциям досту- пен только по подписке
Microsoft Math Solver	Анализ рукописного ввода, пошаговые объяснения решений	Высокая доступность, интуитивный интерфейс	Ограниченные возможности в высшей математике
GeoGebra	Интерактивное моделирование математических объектов	Поддержка геометрических и аналитических методов	Не предназначена для глубокого символьного анализа
Photomath	Решение уравнений с использованием камеры	Простота в использовании, доступность для широкого круга пользователей	Поддержка ограниченного числа математических дисциплин

Нейросеть	Функциональность	Ключевые	Основные
		преимущества	ограничения

DeepMind AlphaGeometry	Автоматическое до- казательство теорем и геометрический анализ	Высокий уровень точности решений, способность к формальному доказательству	Закрытая модель, ограниченный доступ
rStar-Math	Генерация решений математических задач, написание кода	Высокая степень адаптивности, интеграция с языками программирования	Новая технология, требует тестирования на больших выборках
MathGPT	Распознавание сложных математических выражений, генерация решений	Глубокий анализ и интерпретация задач, высокий уровень точности	Может требовать значительных вычислительных ресурсов
OpenAI Codex (для математики)	Генерация кода для математических вычислений	Интеграция с языками программирования, генерация оптимизированных решений	Ограничена в объяснении теоретических аспектов
SageMath AI	Символьные вычисления, численные методы, теория чисел	Интерактивные вычисления, мощные инструменты анализа	Требует опреде- ленной подготов- ки для работы
Maxima AI	Анализ символьной алгебры и математических выражений	Открытый исходный код, мощные сим- вольные вычисления	Не так удобна для начинающих студентов
Mathway	Решение широкого спектра математиче- ских задач	Простота использования, мгновенные решения	Отсутствие детальных объяснений решений
Maple AI	Глубокий анализ математических моделей	Высокая точность, интеграция с аналитическими инструментами	Дорогая лицензия, сложный интерфейс

При внедрении нейросетевых технологий в процесс обучения математическому анализу важно учитывать ряд методических аспектов, которые помогут максимально эффективно использовать потенциал этих технологий и избежать возможных проблем [2]. Важно, чтобы нейросети использовались для того, чтобы компенсировать слабые стороны учащихся, направлять их на повторение пропущенных тем и углубленное изучение трудных разделов математики. Это также способствует формированию у студентов умения работать в самостоятельном режиме, что является важной частью образовательного процесса. Рассмотрим ключевые методические особенности:

[—] нейросети должны быть органично встроены в образовательные программы, выступая в качестве вспомогательного инструмента, а не замены преподавателя;

- важно обучать студентов не только использованию нейросетей, но и критическому анализу их решений, оценке корректности предложенных выводов.
- использование нейросетей должно сопровождаться поэтапным увеличением сложности задач, чтобы студенты развивали самостоятельные аналитические навыки.
- применение системы тестов и диагностических заданий в процессе обучения для точной оценки уровня усвоения знаний и подбора соответствующих заданий.

Результаты, их обсуждение, заключение

Использование нейросетей в обучении математическому анализу открывает множество возможностей для повышения качества образования. Правильная интеграция ИИ в образовательный процесс способствует созданию персонализированных путей обучения, улучшению мотивации студентов, а также экономии времени преподавателей. Основной методический подход состоит в умелом сочетании традиционных методов обучения с инновационными инструментами, что позволяет эффективно решать задачи обучения и диагностики знаний.

Библиографические ссылки

- 1. *Zhou, Y., Zhao, Y.* Artificial Intelligence in Education: A Review // Journal of Educational Technology & Society. 2020. Vol. 23. № 2. P. 35–46.
- 2. *Кондратович, А. Б.* Искусственный интеллект в профессиональной деятельности учителя: потенциальные возможности применения в процессе обучения / А. Б. Кондратович // Вестник ВОИРО. 2023. № 3(8). С. 8–13