СЕГМЕНТАЦИЯ КАДРОВ ИЗ ВИДЕО ЗЕМНОЙ ПОВЕРХНОСТИ, ПОЛУЧЕННОГО С ПОМОЩЬЮ БПЛА, МЕТОДОМ К-СРЕДНИХ

А. А. Козлов¹⁾, М. А. Николайчик²⁾

1) Белорусский государственный университет, Беларусь, Минск, anatoly.kozlov.ak@yandex.ru
2) Белорусский государственный университет, Беларусь, Минск, nikolaitchik.m@gmail.com

В данной статье был проведен тщательный анализ данных, представляющих собой кадры видеоизображения высокого разрешения, и рассмотрены возможные варианты их исследования с точки зрения классических алгоритмов машинного обучения и обработки изображений. К данным была применены иерархические методы кластеризации разбиения изображения на дерево квадрантов и слияния кластеров. Была выделена на изображении область земной поверхности и применен к этому изображению сегментация методом k-средних.

Ключевые слова: обработка изображений; машинное обучение; сегментация; метод k средних; цветовые пространства; иерархические методы кластеризации.

SEGMENTATION OF HIGH-QUALITY VIDEO FRAMES OF THE EARTH'S SURFACE OBTAINED BY A UAV USING K-MEANS CLUSTERING

A. A. Kozlov¹⁾, M. A. Nikolaitchik²⁾

¹⁾Belarussian state university, Belarus, Minsk, anatoly.kozlov.ak@yandex.ru ²⁾Belarussian state university, Belarus, Minsk, nikolaitchik.m@gmail.com

In this article, data as high-quality video image frames observed, a thorough analysis of the data was carried out and possible options for their study were considered from machine learning and image processing perspective. The data were pre-processed, then quadtree decomposition and merging was applied. Those methods were applied to isolate desired region of earth's surface and segment it by k-means clustering method.

Keywords: image processing; machine learning; segmentation; k-means clustering; color spaces; agglomerative clustering; divisive clustering.

Введение

Технологии добычи данных, представляющих собой видеоизображения высокого разрешения, с помощью беспилотных летательных аппаратов предоставляют новые возможности для исследования в области обработки изображений. В данной работе описан один из возможных

подходов к исследованию данных такого рода, который может быть применен для организации слежения за техническими объектами, находящимися в отдалении от городской инфраструктуры, и представляет потенциальную угрозу для находящихся рядом сельских хозяйств, населенных пунктов, природных заповедников и других объектов, требующих охраны от влияния промышленных учреждений.

Одним из самых ранних алгоритмов обработки изображений является применение иерархической кластеризации — дивизионные [1] и агломеративные [2] методы. В применении к изображениям высокого разрешения данные методы сегментации [3] позволяют получать серьезные результаты, присутствуя в качестве предварительной обработки данных для решения более сложных задач. Наиболее часто встречающимся методом сегментации является метод k средних [4], применяющийся для кластеризации многомерных данных. Все алгоритмы в данной работе были реализованы с помощью библиотек Cimg [5] и OpenCV на языке программирования C++.

Целью данной работы является выделение среди кадров видеоизображения высокого разрешения объекта, представляющего интерес для дальнейших исследований. Достижение поставленной цели является непростой задачей в связи с рядом возникающих трудностей. Во-первых, изображения высокого качества и разрешения занимают большое количество памяти, и соответственно, требуют достаточных вычислительных мощностей для их обработки. Во-вторых, не так легко выделить интересующий объект на изображении среди его окружения. Применения одних существующих методов недостаточно для достижения цели исследования, поэтому необходима разработка нового метода решения поставленной задачи.

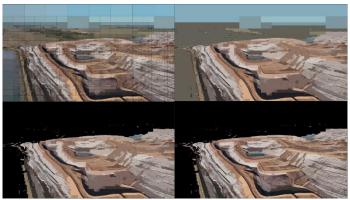
Метод

Метод решения задачи, целью которого является выделение представляющего интерес технического объекта на кадрах видео высокого разрешения, делится на 5 этапов. Первый этап представляет собой предварительную обработку кадров, включающую в себя применение фильтра, размывающего изображение. Данная операция способствует лучшему выделению границ с помощью операторов в следующем градиентов, использующихся Второй этапе. иерархического представляет применение собой дивизионного алгоритма разбиения изображения на дерево квадрантов. На третьем этапе выполняется агломеративный иерархический метод слияния выделенных ранее квадрантов в большие сегменты. Четвёртый этап характеризуется разделением выделенных сегментов на принадлежащие окружающей среде и принадлежащие представляющему интерес объекту с помощью метода k-средних. Формируется маска, которая выделяет объект и удаляет всё, кроме него. На пятом этапе к полученному в четвёртом этапе изображению применяется метод k-средних.

Применение иерархической кластеризации

Для разбиения на квадранты к изображению был предварительно применен свертка-градиент для выделения границ на изображении. Перед этим для лучшего выделения границ изображение было размыто с помощью фильтра.

Далее изображение разбивалось на четыре равные части — квадранты. Условием дальнейшего разбиения квадранта являлось достаточная величина длины вектора градиента в пикселе. То есть если в квадранте имеются ярко выраженная граница, то мы разбиваем его далее. Разбиение прекращается, когда область становится слишком маленькой, либо не имеет ярко выраженных границ.


Слияние происходит за счет формирования графа всех выделенных квадрантов. К полученному графу применяется обход в ширину, связанные вершины объединяются в один кластер, если их значение (средняя величина цвета в квадранте) близко друг к другу относительно манхэттенского расстояния. Полученные в итоге сегменты приобретают цвет, являющийся средним среди цветов всех вошедших в него квадрантов.

Метод k-средних

Метод к-средних позволяет разбить многомерные данные на набор из k кластеров. Изображение можно рассматривать как набор данных, состоящий из $W\cdot H$ наблюдений (W — ширина изображения, \hat{H} — высота изображения). Наблюдения в данном случае являются точками трехмерного или пятимерного евклидового пространства. Трехмерные точки – это цвета пикселей изображения, состоящий из трех каналов. Пятимерные точки – цвет и позиция пикселя на изображении. В начале каждой итерации алгоритма произвольным образом выбираются к точек из пространства наблюдений. Они называются центроидами, и представляют собой центры будущих кластеров. Все наблюдения относят к одному из кластеров, расстояние с центром которого оказалось минимальным. Формируется целевая функция, представляющая собой сумму квадратов расстояний от наблюдений до центров своих кластеров. Цель алгоритма – минимизировать целевую функцию, корректируя положение центроидов. Центры кластеров перемещаются в точку, которая является средним арифметическим от всех наблюдений, принадлежащих кластеру. Данные действия повторяются до тех пор, пока целевая функция не достигнет локального или глобального минимума, или же алгоритм превысит заданное количество итераций.

Экспериментальные результаты

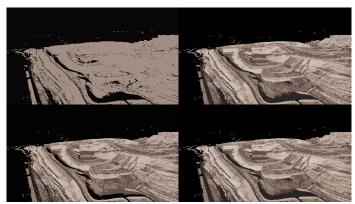

На рис. 1 изображены результаты применения разбиения изображения на квадранты в левом верхнем углу, слияния сетки в общие сегменты в правом верхнем углу, сформированная маска в левом нижнем углу и применение ее к исходному изображению в правом нижнем.

Рис. 1. Разложение на квадранты и слияние, выделение технического объекта на изображении

На рис. 2 изображено применение к изображению сегментации на два, четыре, шесть и восемь кластеров, с помощью метода к средних.

Подход, представленный в данной работе, успешно выполняет сегментацию, разделяя изображение на интересующий нас технический объект, поля, леса и водоемы. Для реализации метода были использованы современные библиотеки, написанные на низкоуровневом языке программирования C++. Таким образом, реализация алгоритмов достаточно оптимальна по скорости и памяти.

Puc. 2. Сегментация выделенного объекта методом k средних с количеством кластеров 2, 4, 6 и 8

Заключение

В результате работы из видеоизображения высокого качества были выделены статические кадры, в качестве предварительной обработки была применена иерархическая кластеризация, выделен интересующий объект, и к изображению объекта был применен метод к средних. Избранные подходы к решению задачи предлагают широкий спектр возможных вариантов дальнейшего исследования.

Библиографические ссылки

- 1. *Brice C. R.*, *Fennema C. L.* Scene analysis using regions // Artificial Intelligence. 1970. P. 205–226.
- 2. *Ohlander R., Price K., Reddy D. R.* Picture segmentation using a recursive region splitting method // Computer Graphics and Image Processing. 1978. P. 313–333.
- 3. *Mori G., Ren X., Efros A., Malik J.* Recovering human body configurations: Combining segmentation and recognition // IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). 2004. P. 326–333.
- 4. Bishop C. M. Pattern Recognition and Machine Learning. New York: Springer, 2006.
- 5. *Tschumperlé D., Tilmant C., Barr V.* Digital Image Processing with C++: Implementing Reference Algorithms with the CImg Library. Boca Raton: CRC Press, 2023. P. 17–36.