БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского государственного университета

А.Д.Король

27 июня 2025 г. Регистранионный № 3084/б.

ОСНОВЫ ХИМИЧЕСКОГО СИНТЕЗА ТВЕРДЫХ ФАЗ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0531-01 Химия

Профилизация: Зеленые химические технологии функциональных материалов и систем

Учебная программа составлена на основе ОСВО 6-05-0531-01-2023, учебного плана № 6-5.5-41/01 от 15.05.2023.

составитель:

О.Н.Врублевская, доцент кафедры неорганической химии химического факультета Белорусского государственного университета, кандидат химических наук, доцент.

РЕЦЕНЗЕНТЫ:

Н.В. Логинова, профессор кафедры общей химии и методики преподавания химии химического факультета Белорусского государственного университета, доктор химических наук, профессор

Л.С.Ещенко, профессор кафедры технологии неорганических веществ и общей химической технологии учреждения образования «Белорусский государственный технологический университет», доктор технических наук, профессор.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой неорганической химии БГУ (протокол № 10 от 06.06.2025)

Научно-методическим советом БГУ (протокол № 11 от 26.06.2025)

Заведующий кафедрой

Д.В.Свиридов

J. B. Kobausryn - Pad runcade Mapy

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Учебная программа по дисциплине «Основы химического синтеза твердых фаз» разработана для обучающихся общего высшего образования в соответствии с образовательным стандартом и учебным планом специальности 6-05-0531-01 Химия. Профилизация: Зеленые химические технологии функциональных материалов и систем.

Учебная дисциплина «Основы химического синтеза твердых фаз» имеет научную и прикладную направленность. В ней суммированы общие подходы к синтезу твердофазных неорганических веществ, основанные на: современных представлениях о термодинамике и кинетике протекания химических реакций в водных и неводных растворах, в расплавах, в газовой и твердой фазах; процессов возникновения и роста зародышей и их рекристаллизации; об особенностях протекания реакций с образованием твердых фаз в определенных структурных организациях; о путях управления составом, структурой и свойствами получаемых продуктов в растворах расплавах, газовой фазе, твердофазном синтезе.

Цели и задачи учебной дисциплины

Цель учебной дисциплины — научить студентов целенаправленно подбирать методику и конкретные условия синтеза неорганических веществ с заданными структурной организацией и составом, что позволит будущим выпускникам самостоятельно решать проблемы разработки новых методов получения материалов различного назначения, а также обслуживания и совершенствования используемых технологий.

Задачи учебной дисциплины:

- 1. Выработка целенаправленного, обоснованного подхода к выбору метода синтеза неорганических веществ в определенной структурной организации, заданного элементного и фазового состава;
- 2. Формирование научного мировоззрения для комплексного анализа факторов, влияющих на степень чистоты получаемого продукта, состав, структурную организацию.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к модулю «Основы научного химического эксперимента» компонента учреждения образования.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.: "Неорганическая химия", "Химия твердого тела".

Требования к компетенциям

Освоение учебной дисциплины «Основы химического синтеза твердых фаз» должно обеспечить формирование следующих компетенций:

Универсальные компетенции:

Владеть основами исследовательской деятельности, осуществлять поиск, анализ и синтез информации;

Быть способным к саморазвитию и совершенствованию профессиональной деятельности;

Проявлять инициативу и адаптироваться к изменениям профессиональной деятельности;

Базовые профессиональные компетенции:

Применять основные понятия, законы и теории неорганической химии при характеристике состава, строения, химических свойств простых веществ и неорганических соединений, планировать и осуществлять эксперимент по синтезу неорганических веществ с использованием методических указаний и литературных источников;

Специализированные компетенции:

Применять современные методологические подходы для планирования, организации и проведения научного эксперимента в области химического синтеза неорганических материалов

Ориентироваться в системе современных знаний о строении кристаллов и частично упорядоченных конденсированных фаз, методах получения твердотельных материалов с заданной структурной организацией (моно- и поликристаллические, нанокристаллические, аморфные и стеклообразные твердые тела, порошки, пленки), механизмах и кинетике реакций с участием твердых тел, особенностях химического, фазового состава и структуры твердых тел, обусловливающих их свойства и практическое применение.

В результате освоения учебной дисциплины студент должен:

знать:

- механизм и кинетику реакций, осуществляемых в растворах (водных, неводных), расплавах, газовой фазе, твердофазных реакциях;
- -факторы, влияющие на получение твердых тел определенного состава (элементного, фазового) и в определенной структурной организации.

уметь:

- -использовать знания при подборе методик получения веществ в заданного состава, в определенной структурной организации и степени чистоты.
- -прогнозировать физические свойства и реакционную способность твердых тел на основе знания их химического, фазового состава и структуры,
- -анализировать вероятные проблемы, возникающие при получении веществ по различным методикам в водной (неводной) среде, расплаве, газовой фазе, твердофазных реакциях.

иметь навык:

- –планирования организацию синтеза неорганических веществ в водной (неводной) среде, при проведении твердофазных реакций.
- –получения веществ в определенной структурной организации в водных растворах;
- -управления реакционной способностью веществ в водных растворах, при проведении твердофазных реакций.

Структура учебной дисциплины

Дисциплина изучается в 5 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Основы химического синтеза твердых фаз» отведено для очной формы получения высшего образования — 102 часов, в том числе 52 аудиторных часов. Из них:

Лекции -30 часов, лабораторные занятия -12 часов, семинарские занятия -8 часов, управляемая самостоятельная работа -2 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации — зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1 Современный неорганический синтез

Тема 1 Современный неорганический синтез: способы управления химическим и фазовым составом, микроструктурой твердых фаз

Способы классификации неорганических твердых фаз по составу, структурной организации.

Современный неорганический синтез: способы управления химическим и фазовым составом, микроструктурой твердых фаз, поиск путей получения и идентификации новых неорганических соединений, композиционных материалов; направления разработки новых методов получения известных соединений, композиционных материалов. Роль предшественников (прекурсоров) в неорганическом синтезе: в растворе, в твердой фазе, в газовой фазе.

Классификация физических и химических процессов, используемых в неорганическом синтезе. Обоснование возможности и рациональности метода синтеза требуемого вещества с заданной структурой. Выбор условий проведения синтеза на основании анализа термодинамических и кинетических факторов, определяющих возможность осуществления и скорость реакции. Прогнозирование степени чистоты, характера загрязнений, структуры, возможных дефектов структуры.

Раздел 2 Синтез неорганических соединений в растворе

Тема 2.1 Классификация растворителей. Синтез монокристаллов и поликристаллических веществ (покрытий, порошков) в водных и неводных растворителях

Растворители, Общая растворимость. характеристика факторов, обусловливающих зависимость скорости реакции в растворе от среды: природа растворителя, вязкость, сольватация, ионизация растворителем, эффект. Зависимость растворимости от природы растворяемого вещества и растворителя (механизмы сольватации, специфическая и неспецифическая сольватация). Процессы, осложняющие и облегчающие растворение. Оценка физических и химических свойств веществ как растворителей и сред для проведения синтеза. Классификация растворителей. Донорные и акцепторные растворителей растворителей. Принципы выбора числа ДЛЯ синтеза. Растворитель как средство управления химическим процессом.

Неводные растворители в современном неорганическом синтезе. Смешанные растворители.

Современные представления о закономерностях образования твердой фазы в растворах. Особенности зародышеобразования в гомогенных и

гетерогенных системах. Влияние условий осаждения (степени пересыщения, вязкости среды, интенсивности перемешивания, температуры, адсорбции ионов на поверхности и др.) на формирование твердой фазы. Кинетика образования и роста частиц твердой фазы в растворе.

Тема 2.2 Общие принципы управления морфологией, структурой твердофазных продуктов, осаждаемых из растворов

Общие принципы управления морфологией, структурой твердофазных продуктов, осаждаемых из растворов.

Принципы подбора условий осаждения для получения продукта определенной дисперсности (от грубо- до ультрадисперсной), структуры (аморфной, кристаллической), формы (порошки, моно- и поликристаллические пленки, монокристаллы). Условия формирования поли- и монодисперсных осадков. Механизмы роста твердых фаз в растворах.

Проблемы количественного выделения продуктов синтеза. Загрязнение продуктов синтеза в растворах и общие принципы получения чистых продуктов. Явления изоморфизма изодиморфизма И особенности проявления при соосаждении веществ из растворов. Условия образования кристаллов, растворов. Специфические дефекты смешанных твердых монокристаллов, выращиваемых в растворе.

Тема 2.3 Синтез веществ в ультра - и нано- дисперсном состоянии

Составы растворов и условия получения веществ в ультра- и нанодисперсном состоянии. Кинетическая и агрегативная устойчивость коллоидных растворов. Особенности химической природы стабилизаторов. Методы концентрирования и очистки золей (испарение растворителя, его экстракция, диализ, электродиализ).

Золь-гель синтез. Получение ксерогелей. Использование золь-гель процесса для получения неорганических сорбентов, катализаторов, синтетических цеолитов, пористой керамики, пленок, вяжущих, волокон.

Тема 2.4 Электрохимический синтез неорганических веществ.

Общая характеристика процессов электрохимического металлов в виде слоев (покрытий), порошков, монокристаллов (вискеры олова и серебра); композитов. Составы синтез сплавов растворов электрохимического синтеза покрытий, роль компонентов раствора.

Электрохимический синтез сильных окислителей (гипохлоритов, хлоратов, манганатов, пероксодисульфатов) а также перхлоратов, ферратов и др.

Синтез оксидных покрытий (анодное окисление алюминия, кремния, германия).

Гидрометаллургия. Извлечение металлов из отработанных электролитов.

Раздел 3. Синтез неорганических веществ в расплавах

Тема 3.1 Синтез монокристаллов, поликристаллических веществ в расплавах

Условия получения монокристаллов простых и сложных веществ, поликристаллических веществ из расплавов.

Классификация методов получения монокристаллов в расплавах — пьедестальные, тигельные и бестигельные методы (методы Вернейля, Чохральского, Киропулоса, Шубникова, Стокбаргера, Бриджмена). Проблемы гидродинамики расплава, теплопереноса и массопереноса при получении монокристаллов из расплава. Механизмы роста твердых фаз в расплавах. Распределение примесей в монокристаллах. Специфические дефекты монокристаллов, выращиваемых в расплаве.

Расплав-раствор (перекристаллизация, синтез сложных веществ (хальгогенидов, титантов, ферратов и др. с определенным фазовым составом).

Тема 3.2. Синтез стекол, ситаллов.

Классификация стекол (элементарные, оксидные, халькогенидные, галогенидные, металлические). Однокомпонентные и многокомпонентные стекла, стеклообразователи. Правила Захарисена для оксидных стекол. Составы промышленный стекол и методы их получения. Химические реакции и физические процессы, сопровождающие процесс стекловарения.

Кинетика формирования твердой фазы при получении стекол охлаждением расплава. Дефекты стекол.

Синтез ситаллов.

Раздел 4 Синтез неорганических веществ в паровой или газовой фазе пленок, порошков, монокристаллов

Тема 4.1. Методы регулирования структурной организации твердых фаз при их получении в газовой (паровой фазе).

Методы регулирования структурной организации твердых фаз при их получении в газовой (паровой фазе). Организация синтеза и его стадии. Механизмы роста твердых фаз. Дефекты монокристаллов и эпитаксиальных пленок, выращиваемых в газовой фазе.

Газотранспортные реакции в получении монокристаллов и эпитаксиальных пленок, очистке веществ. Методы получения монокристаллов, поликристаллических веществ, эпитаксиальных пленок в ампулах, в открытой трубе, в потоке газа-носителя.

Использование термического разложения легколетучих органических соединений металлов для получения пленок и порошков металлов, карбидов и оксидов металлов. 3-d печать.

Тема 4.2. Гидротермальный синтез монокристаллов и поликристаллических веществ.

Гидротермальный синтез. Структурные организации продуктов гидротермального синтеза. Организация процесса синтеза. Механизм роста твердых фаз в гидротермальном синтезе. Специфические дефекты монокристаллов.

Методы гидротермального синтеза: температурного перепада, общего снижения температуры, метастабильной шихты, разделенной шихты.

Раздел 5. Синтез неорганических соединений в твердой фазе.

Тема 5.1. Синтез неорганических соединений в твердой фазе (порошковый и керамический методы, самораспространяющийся высокотемпературный синтез)

Механизмы диффузии в твердых телах. Факторы, определяющие скорость твердофазной реакции.

Керамический метод синтеза. Метод порошковой металлургии.

Самораспространяющийся высокотемпературный синтез.

3-d печать с использованием приемов твердофазного синтеза.

Раздел 6. Физические методы изменения реакционной способности веществ

Тема 6.1. Криохимические методы синтеза

Криохимический метод синтеза, общая характеристика метода. Матричная криохимия. Препаративная криохимия. Возможности криохимии для получения, стабилизации химически неустойчивых частиц и соединений.

Криохимическая технология производства твердофазных материалов стадии: получение криогранул (криопротекторы), удаление растворителя (сублимационная сушка, криоосаждение, криоэкстракция). Синтез ферритов, адсорбентов, катализаторов.

Тема 6.2. Механохимические методы синтеза

Общая характеристика механохимического метода, физические процессы и химические реакции, протекающие при механоактивации твердофазных веществ. Механохимические реакции в системах твердое-твердое, твердоежидкое, твердое-газ. Синтез оксидов, сплавов.

Тема 6.3. Сонохимические методы синтеза

Кавитация. Сонолиз воды. Синтез нанодисперсных металлов, оксидов, халькогенидов в водных (неводных растворах). Воздействие ультразвука на твердофазные системы

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

-,		Количество аудиторных часов					OB	
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	2	3	4	5	6	7	8	9
1	Современный неорганический синтез							
1.1	Современный неорганический синтез: способы управления химическим и фазовым составом, микроструктурой твердых фаз.	2						Устный опрос. Решение задач
2	Синтез неорганических соединений в растворе							
2.1	Классификация растворителей. Синтез монокристаллов и поликристаллических веществ в водных и неводных растворителях.	2		2				Устный опрос. Решение задач
2.2	Общие принципы управления морфологией, структурой твердофазных продуктов, осаждаемых из растворов.	4						Устный опрос. Контрольная работа.
2.3	Синтез веществ в ультра - и нанодисперсном состоянии	2		1	4			Дискуссия. Контрольная работа. Отчет о лабораторной работе
2.4	Электрохимический синтез покрытий из металлов и сплавов, оксидов. Применение	4		1	8		1	Собеседование. Коллоквиум по темам 1.1-2.4

	электролиза для получения сильных окислителей.					Отчет о лабораторной работе	
3	Синтез неорганических веществ в расплавах						
3.1	Синтез монокристаллов, поликристаллических веществ, в расплавах.	2	1			Дискуссия, коллоквиум по	
3.2	Синтез стекол, ситаллов.	2	1			темам 3.1. и 3.2	
4	Синтез неорганических веществ в паровой или газовой фазе пленок, порошков, монокристаллов						
4.1	Методы регулирования структурной организации твердых фаз при их получении в газовой (паровой фазе).	2	1			Собеседование, Контрольная работа	
4.2	Гидротермальный синтез монокристаллов и поликристаллических веществ.	2	1		1	Собеседование, Контрольная работа, коллоквиум по темам 4.1-4.2	
5	Синтез неорганических соединений в твердой фазе						
5.1	Синтез неорганических соединений в твердой фазе (порошковый и керамический методы, самораспространяющийся высокотемпературный синтез)	4				Собеседование	
6	Физические методы изменения реакционной способности веществ						
6.1	Криохимические методы синтеза	2				Коллоквиум по темам 6.1. и 6.2, написание рефератов	

6.2	Механохимические методы синтеза.	2				
6.3	Сонохимические методы синтеза					
		30	8	12	2	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Химическая технология неорганических веществ: учебное пособие / Т. Г. Ахметов, В. М. Бусыгин, Л. Г. Гайсин, Р. Т. Ахметова; под редакцией Т. Г. Ахметова. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 452 с.
- 2. Гуров, А. А. Химия: теория и практика. Металлы и сплавы : учебник / А. А. Гуров, П. В. Слитиков, Ж. Н. Медных ; под редакцией А. А. Гурова. 2-е изд., испр. Москва : МГТУ им. Н.Э. Баумана, 2019. 359 с.

Дополнительная литература

- 1. Врублевская, О. Н. Основы химического синтеза твердых фаз: пособие / О. Н. Врублевская. Мн.: БГУ, 2013. –126 с.
- 2. Шкуро, А. Е. Технологии и материалы 3D-печати : учебное пособие / А. Е. Шкуро, П. С. Кривоногов. Екатеринбург : УГЛТУ, 2017. 99 с. ISBN 978-5-94984-616-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/142568
- 3. Гропянов, А. В. Порошковые материалы [Электронный ресурс] : учебное пособие / Гропянов А. В. Санкт-Петербург : Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2017. 74 с.
- 4. Болдырев, В. В. Управление химическими реакциями в твердой фазе // Соросовский образовательный журнал. −1996. № 5. С. 49–55.
- 5. Пополитов, В. И. Выращивание монокристаллов в гидротермальных условиях / В. И. Пополитов, Б. Н. Литвин ; отв. ред. И. В. Тананаев. Москва : Наука, 1986. 190 с.
- 6. Фиалков, Ю. Я. Растворитель как средство управления химическим процессом / Ю. Я. Фиалков. Ленинград : Химия, Ленинградское отд-ние, 1990. 236с.
- 7. Пинчук, С. И. Химия твердого тела (краткий курс): Учебник для студентов технических вузов. Киев: ООО «Издательский дом АртЕК», 2018. 120 с.
- 8. Остроушко, А. А. Физико-химические основы получения твердофазных материалов электронной техники / А. А. Остроушко, Ю. В. Могильников. Екатеринбург: Изд-во Уральского ун-та, 2011. 158 с.
- 9. Вест, А. Р. Химия твердого тела: теория и приложения: в 2 ч. Ч. 1 / А. Р. Вест; пер. с англ. А. Р. Кауля, И. Б. Куценка; под ред. Ю. Д. Третьякова. Москва: Мир, 1988. 555 с.
- 10. Кнотько, А. В. Химия твердого тела: учеб. пособие / А. В. Кнотько, И. А. Пресняков, Ю. Д. Третьяков. Москва: Academia, 2006. 303 с.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Текущий контроль качества усвоения знаний по данной учебной дисциплине может осуществляться с использованием следующих форм диагностики компетенций:

- 1. Устный опрос в формате вопрос ответ
- 2. Отчёт о лабораторной работе
- 3. Отчеты по домашним практическим упражнениям
- 4. Контрольная работа
- 5. Написание рефератов
- 6. Решение задач
- 7. Собеседование, коллоквиум, дискуссия

Формой промежуточной аттестации по дисциплине «Основы химического синтеза твердых фаз»» учебным планом предусмотрен зачет.

Примерный перечень заданий для управляемой самостоятельной работы

Tema 2.4. Электрохимический синтез покрытий из металлов и сплавов, оксидов. Применение электролиза для получения сильных окислителей (1 ч.)

Задания проектного типа (индивидуальные):

- 1) Предложить состав раствора и условия электрохимического синтеза медного покрытия и порошка меди.
- 2) Предложить состав раствора и условия анодирования кремния (алюминия, титана)
- 3) Предложить состав раствора и условия получения бертолетовой соли

Форма контроля – Собеседование. Коллоквиум.

Тема 4.2 Гидротермальный синтез монокристаллов и поликристаллических веществ. (1ч.)

Задания проектного типа (индивидуальные):

- 1) Предложить методики получения монокристаллического кварца, цинкита.
 - 2) Предложить методики получения ультрадисперсного TiO_2 .
- 3) Предложить методики получения цирконата бария в разных структурных организациях.

Форма контроля – опрос. Собеседование, контрольная работа, коллоквиум.

Примерная тематика лабораторных занятий

Лабораторное занятие № 1. Синтез в водных растворах ультра- и нанодисперсных порошков серебра (оксидов железа, оксидов кобальта); получение золя и геля SiO_2 .

Лабораторное занятие № 2. Химический синтез поликристаллических покрытий в водных растворах (покрытия из никеля, олова, меди, серебра) на подложках их меди, стали, алюминия.

Лабораторное занятие № 3. Электрохимический синтез поликристалллических покрытий в водных растворах (покрытия из никеля, олова, меди, сплава никель-олово и др.) на подложках их меди, стали, алюминия.

Примерная тематика семинарских занятий

Семинарское занятие № 1. «Современный неорганический синтез. Классификация методов синтеза. Синтез моно- и поликристаллических веществ в растворах»

- 1) Приведите примеры различных способов классификации неорганических веществ.
- 2) Приведите примеры различных типов структурной организации твердых тел. (монокристаллы, поликристаллические системы, др.)
- 3) Укажите способы управления реакционной способностью веществ при осуществлении реакций в водных растворах и твердофазном синтезе.
- 4) Этапы формирования твердых фаз (в растворах, расплавах, газовой фазе). Гомо- и гетерогенное зародышеобразование. Критический радиус зародыша кристалла. Механизмы роста кристаллов.
- 5) Механизмы гомо- и гетеромолекулярной ассоциации, гомо- и гетеро- ионизации молекул растворителя и растворенного вещества.
- 6) Анализ диаграмм растворимости неорганических веществ в воде. Выбор условий кристаллизации твердой фазы.
- 7) Метастабильные и лабильные растворы. Способы приготовления пересыщенных растворов.
- 8) Факторы, влияющие на растворимость вещества, правила приготовления пересыщенных растворов, в растворителях с разной диэлектрической проницаемостью.
 - 9) Синтез монокристаллов, оборудование.
- 10) Дефекты монокристаллов (нульмерные, одномерные, двухмерные и специфические), выращенных в растворах. Полиморфизм, изоморфизм, изодиморфизм (примеры)

Семинарское занятие № 2. «Синтез веществ в ультра - и нанодисперсном состоянии. Электрохимический синтез покрытий из металлов и сплавов, оксидов. Применение электролиза для получения сильных окислителей»

- 1) Классифицируйте типы химических реакций, используемых для синтеза золей. Приведите примеры получения золей неметаллов, металлов, оксидов металлов, халькогенидов, труднорастворимых солей. Охарактеризуйте состав коллоидных частиц в каждом приведенном случае. От чего зависит заряд частицы?
- 2) Стабилизация частиц золей. Вещества-стабилизаторы. Контроль размеров и формы частиц.

- 3) Укажите стадии химических превращений при получении гелей. Приведите примеры механизмов сополикондесации гидролизованных алкоксидов.
- 4) Принцип электрохимического синтеза. Законы электрохимического синтеза (Законы Фарадея). Оборудование для проведения электрохимического синтеза.
- 5) Что означает термин «перенапряжение» (поляризация). Какие составляющие включает данное понятие. Как перенапряжение связано со стандартным значением окислительно-восстановительного потенциала. Как влияет величина перенапряжения на качество формирующихся покрытий.
- 6) Как влияет природа катиона, аниона, концентрация ионов металлов, рH, плотность тока, рабочая температура электролита, наличие в растворе ПАВ на качество формирующихся металлических покрытий, выход металла по току?
- 7) Составы электролитов для электрохимического синтеза металлических покрытий, компоненты, их роль.
- 8) С какими факторами связано микро- и макрораспределение металла (плотности тока) по поверхности катода?
- 9) Приведите примеры получения нанопроволок металлов с использованием метода электрохимического синтеза?
- 10) Предложите условия получения порошковой меди. Возможно ли получение порошка никеля, железа?
- 11) Какие проблемы, возникающие при электроосаждении металлических покрытий, позволяет решить использование неводных электролитов? Сформулируйте требования к неводным электролитам, которые могут быть использованы в электрохимическом синтезе?
 - 12) Электрохимический синтез гипохлорита натрия.
 - 13) Электрохимический синтез хлората калия.
 - 14) Электрохимический синтез пероксодисульфата аммония.
 - 15) Электрохимический синтез перманганата калия.

Семинарское занятие N_{Ω} 3. «Синтез монокристаллов (поликристаллических веществ) в расплавах и расплавах-растворах. Синтез стекол, ситаллов. Методы регулирования структурной организации твердых фаз при их получении в газовой (паровой фазе). Гидротермальный синтез монокристаллов и поликристаллических веществ»

- 1) От каких факторов зависит скорость роста кристалла в растворе (водном или неводном) и расплаве?
- 2) Механизмы роста монокристаллов в расплавах. Распределение примесей по длине кристалла и его сечению, в зависимости от формы границы роста.
- 3) Сущность метода Вернейля. Преимущества метода и его недостатки.
- 4) Сущность метода Чохральского. Влияние гидродинамики расплава на дефектность формирующегося кристалла.

- 5) Сущность метода Киропулоса. Преимущества метода и его недостатки.
 - 6) Метод зонной плавки. Особенности применения метода.
- 7) Дайте краткую характеристику тигельным методам кристаллизации (Методы Бриджмена, Стокбаргера и др.).
 - 8) Синтез монокристаллов в растворах-расплавах. (3 вида методов)
 - 9) Дефекты кристаллов, получаемых путем синтеза из расплава.
- 10) Отличия в свойствах аморфных (стеклообразных) и кристаллических веществ. Условия формирования веществ в стеклообразном состоянии. Изменение свойств (объема и теплоемкости) вещества в расплаве, при кристаллизации и стекловании.
- 11) Классификация веществ, склонных к стеклообразованию. Классификация стеклообразующих материалов по типу химической связи.
- 12) Правила Захарисена. Структурные модели стеклообразного оксида кремния(IV) и боратных стекол.
- 13) Составы промышленных стекол. Назначение компонентов стекол (стеклообразователи, модификаторы, глушители, осветлители, красители, ускорители). Соединения, используемые в качестве исходных реагентов.
- 14) Этапы формирования монокристаллов в газовой фазе: методы перевода вещества в газовую (паровую фазу); механизмы переноса вещества от источника до подложки; механизм кристаллизации в газовой (паровой) фазе.
- 15) Выращивание монокристаллов и эпитаксиальных пленок в газовой (паровой) фазе методом сублимации-конденсации в замкнутой системе, запаянной ампуле, в проточной системе.
- 16) Укажите сходства и отличия (специальные требования) в выращивании монокристаллов (эпитаксиальных пленок) в газовой фазе методами сублимации-конденсации и химических реакций. Классифицируйте типы реакций, которые можно использовать для выращивания монокристаллов в газовой фазе.
- 17) Транспортные реакции: определение, назначение, «агенты переносчики», способы реализации (в проточной системе, запаянной ампуле).
- 18) Молекулярно лучевая эпитаксия (получение эпитаксиальных пленок германия, арсенида галлия, послойное получение полупроводниковых структур селенида свинца –арсенид галлия).
- 19) Приведите примеры получения поликристаллических структур методом синтеза в газовой фазе.
- 20) Принцип гидротермального синтеза. Области применения метода. Требования к веществам, синтезируемым методом гидротермального синтеза.
- 21) Методы гидротермального выращивания кристаллов. Метод температурного перепада. Метод общего снижения температуры. Метод «метастабильной фазы». Метод разделенной шихты. Дефекты кристаллов, получаемых методом гидротермального синтеза.

Описание инновационных подходов и методов к преподаванию учебной лисциплины

При организации образовательного процесса по спецкурсу используются практико-ориентированный подход и метод учебной дискуссии.

Практико-ориентированный подход предполагает участие студентов в целенаправленном обмене мнениями, идеями для предъявления и/или согласования существующих позиций по определенной проблеме.

Использование метода обеспечивает появление нового уровня понимания изучаемой темы, применение знаний (теорий, концепций) при решении проблем, определение способов их решения.

Метод учебной дискуссии предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы

При изучении учебной дисциплины рекомендуется использовать следующие формы самостоятельной работы:

- поиск и обзор литературы и электронных источников по заданной проблеме курса;
 - решение задач, предлагаемых на семинарских занятиях;
 - подготовка к лабораторным и практическим занятиям.
 - подготовка реферата по выбранной теме.

Для организации самостоятельной по учебной работы студентов используются современные информационные дисциплине ресурсы: портале educhem.bsu.by размещен комплекс учебных образовательном учебно-методических материалов (учебно-программные материалы, материалы определить текущего контроля текущей аттестации, позволяющие И учебной обучающихся соответствие деятельности требованиям образовательных стандартов высшего образования и учебно-программной документации, в т.ч. вопросы для подготовки к экзамену и зачету, задания, вопросы для самоконтроля, список рекомендуемой литературы, информационных ресурсов).

Примерный перечень вопросов к зачету

- 1) Этапы формирования твердых фаз (в растворах, расплавах, газовой фазе). Гомо- и гетерогенное зародышеобразование
- 2) Классификация физических и химических процессов, используемых в неорганическом синтезе (классификация Ормонта). Обоснование возможности и рациональности метода синтеза требуемого вещества с заданной структурой.

- 3) Растворители, растворимость. Зависимость растворимости от природы растворяемого вещества и растворителя Классификация растворителей. Донорные и акцепторные числа растворителей. Принципы выбора растворителей для синтеза.
- 4) Механизмы гомо- и гетеромолекулярной ассоциации, гомо- и гетеро- ионизации молекул растворителя и растворенного вещества. Физические процессы и химические процессы, сопровождающие (осложняющие) процесс растворения веществ.
- 5) Способы получения коллоидных растворов, их устойчивость, методы стабилизации. Состав коллоидных частиц.
- 6) "Агрегативная и "кинетическая устойчивость" золей, "фазовая и поверхностная устойчивость" частиц дисперсной фазы. От чего зависят эти типы устойчивости, чем определяются? Какие воздействия нарушают устойчивость золей. Эмпирические закономерности коагуляции золей электролитами. Стабилизация частиц золей, вещества-стабилизаторы. Контроль размеров и формы частиц.
- 7) Составы растворов для получения гелей. Стадии химических превращений при получении гелей. Механизмы сополикондесации гидролизованных алкоксидов. Синерезис. Применение крерогелей.
- 8) Анализ диаграмм растворимости неорганических веществ в воде. Выбор условий кристаллизации твердой фазы. Способы приготовления пересыщенных растворов. Метастабильные и лабильные растворы.
- 9) Преимущества и недостатки получения монокристаллов или поликристаллических неорганических веществ в растворах. Дефекты монокристаллов, выращенных в растворах. Полиморфизм, изоморфизм, изодиморфизм (примеры).
- 10) Выращивание в кристаллы геле (механизм выращивания кристаллов). Схема устройства, порядок операций.
- 11) Принцип электрохимического синтеза. Законы электрохимического синтеза. Оборудование для проведения электрохимического синтеза. Механизм электрохимического восстановления Ni(II), окисления Sn(II) в водном растворе.
- 12) Влияние природы катиона, аниона, концентрации ионов металлов, рH, плотность тока, рабочей температуры электролита, наличие в растворе ПАВ на качество формирующихся металлических покрытий, выход металла по току.
- 13) Получение нанопроволок металлов с использованием метода электрохимического синтеза. Условия получения порошков металлов (монокристаллов металлов).
- 14) Электрохимический синтез гипохлоритов, хлоратов, перхлоратов. Процессы, протекающие на катоде и аноде.
- 15) Требования к веществам, синтезируемым методом гидротермального синтеза. Методы гидротермального выращивания кристаллов. (Метод температурного перепада, метод общего снижения

температуры. метод «метастабильной фазы, метод разделенной шихты). Дефекты кристаллов, получаемых методом гидротермального синтеза.

- 16) Сравнительная характеристика методов выращивания монокристаллов (поликристаллов) из расплавов и растворов? Укажите ограничения применения методов выращивания кристаллов из расплавов и растворов. Дефекты синтезируемых кристаллов.
- 17) Метод синтеза монокристаллов из расплавов. Границы применимости метода. Скорость выращивания монокристаллов, требования к атмосфере при которой проводится кристаллизация, требования к материалу тигля.
- 18) Выращивание монокристаллов из расплавов методом Чохральского. Распределение примесей, типичные для этого метода дефекты.
- 19) Выращивание монокристаллов из расплавов методом Киропулоса. Распределение примесей, типичные для этого метода дефекты.
- 20) Выращивание и очистка монокристаллов методом зонной плавки. Распределение примесей, типичные для этого метода дефекты
- 21) Тигельные методы выращивание монокристаллов из расплавов. Распределение примесей, типичные для этого метода дефекты.
 - 22) Синтез монокристаллов в растворах-расплавах. (3 вида методов)
- 23) Этапы формирования монокристаллов в газовой фазе: методы перевода вещества в газовую (паровую фазу); механизмы переноса вещества от источника до подложки; механизм кристаллизации в газовой (паровой) фазе.
- 24) Выращивание монокристаллов в газовой (паровой) фазе методом сублимации-конденсации в замкнутой системе, запаянной ампуле, в проточной системе. Получение поликристаллических структур.
- 25) Выращивание монокристаллов в газовой фазе методом химических реакций (в том числе транспортные реакции). Классификация типов реакций используемых для выращивания монокристаллов в газовой фазе.
- 26) Газофазный синтез эпитаксиальных пленок. Гомоэпитаксия, гетероэпитаксия. Механизмы роста гомо- и гетеро- эпитаксиальных пленок. Дефекты эпитаксиальных пленок. Примеры получения эпитаксиальных пленок.
- 27) Синтез эпитаксиальных пленок с использованием металлорганических соединений. Молекулярно лучевая эпитаксия (получение эпитаксиальных пленок германия, арсенида галлия, послойное получение полупроводниковых структур селенида свинца арсенид галлия).
- 28) Объемная и поверхностная диффузия в твердофазном синтезе (механизмы, схемы, геометрические модели). Стадии физико-химических превращений регентов в твердофазных реакциях.
- 29) Методы получения порошковых реагентов для керамического метода синтеза (привести примеры).
 - 30) Стадии твердофазного керамического метода синтеза.
- 31) Механические, физические, химические методы получения порошковых металлов (привести примеры).
 - 32) Стадии твердофазного метода порошковой металлургии.

- 33) Принцип реализации самораспространяющегося высокотемпературного синтеза твердофазных материалов. Типы реакций применимых для CBC синтеза.
- 34) Структура материалов, получаемых методом СВС. Принципы проведения СВС синтеза в промышленном масштабе
- 35) Условия формирования веществ в стеклообразном состоянии. Температура стеклования. Изменение свойств (объема и теплоемкости) вещества в расплаве, при кристаллизации и стекловании.
- 36) Классификация стеклообразующих материалов по типу химической связи. Правила Захарисена. Структурные модели стеклообразного оксида кремния(IV) и боратных стекол.
- 37) Составы промышленных стекол. Стадии технологического процесса получения промышленных (оконных) стекол. Дайте характеристику Физическим процессам и химическим реакциям, осуществляющимся на каждой стадии промышленного процесса. Дефекты стекол.
- 38) Ситаллы, применение, состав шихты. Особенности синтеза ситаллов. Катализаторы, применяемые для получения ситаллов и механизмы их действия.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей учебную
с которой		программы	программу (с указанием
требуется		учреждения высшего	даты и
согласование		образования по учебной	номера протокола)
		дисциплине	
Химия	Неорганической	Предложения	Рекомендовать к
твердого тела	химии	отсутствуют	утверждению учебную
			программу
			(протокол № 10 от
			06.06.2025)

Д.В.Свиридов

Заведующий кафедрой неорганической химии член-корреспондент НАН Беларуси доктор химических наук, профессор

06.06.2025

дополнения и изменения к учебной программе уо

на ____/___ учебный год

№ п/п	Дополнения и изменения	Основание				
Учебн	ая программа пересмотрена и одобрена на (протокол №	заседании кафедры от 202_ г.)				
	· ·					
Заведующий кафедрой						
	DOMESTIA LO					
УТВЕРЖДАЮ Декан факультета						