БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского государственного университета

А.Д.Король

23 мая 2025 г.

Регистранионный №2972/н.

СЛОЖНЫЕ ХИМИЧЕСКИЕ РАВНОВЕСИЯ

Учебная программа учреждения образования по учебной дисциплине для специальности:

7-07-0531-01 Фундаментальная химия

Учебная программа составлена на основе ОСВО 7-07-0531-01-2023; учебного плана БГУ № 7-5.5-68/01 от 15.05.2023.

составитель:

А.А.Кудако, доцент кафедры аналитической химии химического факультета Белорусского государственного университета, кандидат химических наук.

РЕЦЕНЗЕНТ:

А.Л.Козлова-Козыревская, заведующий кафедрой химии и методики преподавания химии УО «Белорусский государственный педагогический университет им. М. Танка», кандидат химических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой аналитической химии БГУ (протокол № 16 от 15.05.2025)

Научно-методическим Советом БГУ (протокол № 10 от 22.05.2025)

Заведующий кафедрой

Af ...

М.Ф.Заяц

T. B. Kobouloup-Parminua?

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Одним из важнейших теоретических разделов аналитической химии является раздел ионных и экстракционных равновесий, правильный расчет которых позволяет сознательно управлять химическими процессами и создавать необходимые условия для количественного определения, выделения или разделения веществ, содержащихся в анализируемой смеси. Теоретические расчеты и обоснования развивают правильные представления о химических равновесиях, об их взаимном влиянии и составляют объективную основу для научного прогнозирования. Без теоретических знаний по расчету равновесий и без умения применять их на практике невозможно успешное освоение аналитической химии.

Особенностью настоящего курса является приложение универсального теоретического подхода к самым различным видам равновесий, основанного на широком использовании в расчетах условных констант и молярных долей, которые позволяют количественно оценить состояние рассматриваемых равновесий в реальных условиях и учесть влияние побочных конкурирующих реакций. Применение указанных величин дает возможность быстро установить как суммарное количественное влияние тех или иных факторов на основное рассматриваемое равновесие, так и каждого из них в отдельности. Именно в этом проявляется основное методическое преимущество такого подхода, которое особенно ощутимо при проведении теоретического прогнозирования равновесий.

Цели и задачи учебной дисциплины

Цель учебной дисциплины — систематизировать знания об основных типах ионных и экстракционных равновесий и подходах к их описанию и расчету с помощью систем компьютерной математики, что позволит в будущей профессиональной деятельности химика решать разнообразные задачи теоретического и экспериментального характера, в частности, определять оптимальные условия проведения химического анализа и синтеза.

Задачи учебной дисциплины:

- 1. Развить у студентов навыки расчета ионных и экстракционных равновесий, заключающиеся в использовании условных констант и молярных долей.
- 2. Ознакомить студентов с системой компьютерной математики Mathematica, онлайн-программами для расчета и графического описания равновесий и показать их возможности для прогнозирования равновесий в сложных многокомпонентных системах.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием. Учебная дисциплина относится к модулю «Математические методы в химии» компонента учреждения образования.

Изучение дисциплины «Сложные химические равновесия» проводится после освоения студентами курсов «Высшая математика», «Неорганическая химия», «Аналитическая химия».

Требования к компетенциям

Освоение учебной дисциплины «Сложные химические равновесия» должно обеспечить формирование следующей специализированной компетенции:

Применять методы математического анализа, дифференциального исчисления, теории вероятностей, теории статистического оценивания для решения задач химического содержания.

В результате освоения учебной дисциплины студент должен:

знать:

- основные понятия и определения, используемые для описания систем с ионными и экстракционными равновесиями;
- основные математические приемы и приближения для вывода и решения уравнений, описывающих те или иные равновесия;

уметь:

- рассчитывать pH растворов протолитов, а также молярные доли частиц, участвующих в кислотно-основном равновесии;
- рассчитывать равновесные концентрации и молярные доли частиц в системах с комплексными соединениями, в том числе при протекании побочных процессов с участием комплексообразователя и лигандов;
- рассчитывать растворимость малорастворимых соединений (MPC) в различных случаях: в чистом растворителе; в присутствии электролита, имеющего или не имеющего общих с MPC ионов; при протекании побочных процессов (протолитические реакции, комплексообразование);
- графически описывать ионные равновесия с помощью распределительных и концентрационно-логарифмических диаграмм, проводить по ним вычисления;
- прогнозировать распределение неэлектролитов и псевдоэлектролитов (кислоты, основания, амфолиты в условиях подавленной диссоциации), а также возможность и эффективность разделения смесей веществ в различных экстракционных системах;

иметь навык:

- применения полученных знаний при расчете гомогенных равновесий в реальных биологических объектах (кровь, слюна, моча, желудочный сок и т.д.);
- расчета растворимости MPC (бетон, минералы) в природных водах различной кислотности и при разных парциальных давлениях газов;
 - оптимизации экстракционных процессов в различных системах.

Структура учебной дисциплины

Дисциплина изучается в 5 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Сложные химические равновесия» отведено для очной формы получения высшего образования — 90 часов, в том числе 44 аудиторных часа, лекции — 10 часов, практические занятия — 26 часов, семинарские занятия — 8 часов. Из них:

– лекции – 10 часов, семинарские занятия – 4 часа, практические занятия –
26 часов, управляемая самостоятельная работа (УСР) – 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы.

Форма промежуточной аттестации – зачет.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Общие принципы описания и расчета равновесий, протекающих в растворах

Тема 1.1. Количественные характеристики равновесий

Химическое равновесие, закон действующих масс. Термодинамические и концентрационные (реальные) константы равновесия, взаимосвязь между ними. Активность, коэффициент активности. Теория Дебая – Хюккеля, ионная сила раствора. Уравнения для расчета коэффициентов активности.

Главное и побочное равновесия. Условные (эффективные) и смешанные константы равновесия. Молярные доли частиц, участвующих в равновесии.

Tema 1.2. Математические приемы и программы, используемые при расчете равновесных составов химических систем

Представление о химическом уравнении как уравнении математическом. Линейные комбинации химических реакций, математические операции с константами равновесия. Уравнения материального баланса и электронейтральности.

Компьютерные программы (Wolfram Mathematica, Mathcad, Maple) и онлайн-редакторы (https://chemequ.ru), используемые для расчета ионных и экстракционных равновесий.

Тема 1.3. Графические методы описания равновесий

Области преобладания сортов частиц. Распределительные (РД) и концентрационно-логарифмические (КЛД) диаграммы: принцип построения, анализ, использование в расчетах. Кривые образования и диссоциации. Графические зависимости для характеристики экстракционных процессов.

Раздел 2. Кислотно-основные (протолитические) равновесия

Тема 2.1. Общая характеристика кислотно-основных систем

Современные представления о кислотах и основаниях. Амфолиты. Количественное описание силы кислот и оснований в различных растворителях: константы кислотности, основности, протонирования, самоионизации. Функции кислотности, понятие о суперкислых и суперосновных средах.

Кислотно-основные буферные растворы. Буферная емкость, рабочая область буферного раствора. Сложные буферные системы.

Тема 2.2. Расчет равновесий в кислотно-основных системах

Применение уравнений материального баланса и электронейтральности к кислотно-основным системам. Функция образования (среднее протонное число).

Типовые задачи, встречающиеся при расчете pH. Универсальные методы расчета pH через составление систем уравнений и уравнения электронейтральности; допущения и приближения, используемые в вычислениях.

Тема 2.3. Графическое описание кислотно-основных равновесий

РД, кривые образования и диссоциации слабых кислот и слабых оснований. КЛД (диаграммы Хегга) для растворов слабых кислот и слабых оснований, смесей слабых кислот или слабых оснований, солей слабых кислот и слабых оснований. РД и КЛД для растворов амфолитов.

КЛД газов, слабо растворимых в воде (на примере углекислого газа и сероводорода); использование закона Генри.

Раздел 3. Равновесия комплексообразования

Тема 3.1. Равновесия в растворах комплексных соединений

Общая характеристика и классификация комплексных соединений. Математическое описание процессов комплексообразования: ступенчатые и общие (суммарные) константы нестойкости и устойчивости, молярные доли ионов металла и комплекса, функция закомплексованности. Уравнения материального баланса и электронейтральности применительно к процессам комплексообразования, функция Бьеррума (среднее лигандное число).

Тема 3.2. Расчет равновесий комплексообразования

Расчет равновесных концентраций частиц при отсутствии побочных реакций с участием комплексообразователя и лиганда.

Расчет равновесных концентраций частиц при конкуренции двух комплексообразователей за один лиганд на примерах одноядерных комплексов. Образование гетерополиядерных комплексов.

Расчет равновесных концентраций частиц в условиях образования смешаннолигандных комплексов (конкуренция двух лигандов за один комплексообразователь) на примерах одноядерных комплексов.

Расчет равновесных концентраций частиц при вступлении комплексо-образователя и лиганда в побочные реакции.

Тема 3.3. Графическое описание равновесий комплексообразования

РД и кривые образования для комплексных соединений. Понятие о трехмерных РД для комплексов.

Раздел 4. Равновесия в растворах малорастворимых соединений (МРС)

Тема 4.1. Растворимость MPC в жидкостях и ее расчет в различных случаях

Основные количественные зависимости для расчета растворимости MPC. Произведение растворимости, условное произведение растворимости. Расчет растворимости MPC в его насыщенном растворе в отсутствие и в присутствии одноименных ионов без протекания побочных реакций.

Расчет растворимости MPC с учетом протолитических реакций их ионов, наличия посторонних комплексообразующих веществ (в том числе избытка осадителя, обладающего комплексующими свойствами). Учет одновременного влияния различных факторов при расчете растворимости MPC.

Расчет растворимости труднорастворимых карбонатов и сульфидов при пропускании газа (углекислый газ, сероводород) через раствор.

Расчет минимальной растворимости МРС при избытке осадителякомплексанта. Расчет минимальной растворимости осадков гидроксидов и осадков-амфолитов.

Тема 4.2. Графическое описание растворимости МРС

Двумерные и трехмерные графики растворимости. Использование КЛД для оценки растворимости MPC при протекании комплексообразования.

Тема 4.4. Осаждение и маскирование в аналитической химии

Осаждение MPC. Полнота осаждения и условия ее достижения при минимальном избытке осадителя, при избыточной концентрации ионовосадителей, при растворении MPC в избытке осадителя или постороннего комплексанта. Совместное осаждение двух катионов или двух анионов. Разделение ионов путем избирательного осаждения, теоретические критерии эффективности разделения. Превращение осадков, оценка полноты и степени превращения.

Маскирование осаждаемых ионов. Условия маскирования в насыщенном растворе MPC, в присутствии избытка ионов-осадителей, при известных ориентировочных концентрациях маскируемых ионов.

Раздел 5. Экстракционные равновесия

Tema 5.1. Экстракция молекулярных форм неэлектролитов и псевдоэлектролитов

Количественные характеристики экстракции неэлектролитов: константа и коэффициент распределения, степень извлечения (экстракции). Определение константы распределения неэлектролита, изотерма экстракции.

Экстракционные равновесия в растворах слабых кислот, учет димеризации в органической фазе. Экстракционные равновесия в растворах слабых оснований и амфолитов. Зависимость коэффициентов распределения и степени экстракции от рН водного раствора и соотношения объемов фаз.

Расчет оптимальных условий выделения, концентрирования и разделения молекулярных форм веществ.

Тема 5.2. Экстракция комплексов металлов и ионных ассоциатов. Анионообменная экстракция

Экстракция нейтральных внутрикомплексных соединений и анионных комплексов металлов. Экстракция ионных ассоциатов. Константа экстракции. Зависимость эффективности экстракции от рН водной фазы.

Расчет оптимальных условий разделения комплексных соединений металлов, образованных лигандами различной природы (в том числе с учетом побочных реакций — протонизации, гидроксокомплексообразования). Расчет максимальной экстракции нейтральных внутрикомплексных соединений. Расчет

оптимальных условий выделения, концентрирования и разделения веществ, экстрагирующихся по механизму экстракции ионных ассоциатов.

Анионообменная экстракция. Константа обмена, ее определение и расчет для органических и металлокомплексных анионов.

Расчет оптимальных условий разделения анионов различной природы. Оценка эффективности экстракции анионов в зависимости от pH раствора.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

		Количество аудиторных часов					В	
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	2	3	4	5	6	7	8	9
1	Общие принципы описания и расчета равновесий, протекающих в растворах							
1.1	Количественные характеристики равновесий	0,5						Устный опрос
1.2	Математические приемы и программы, используемые при расчете равновесных составов химических систем	0,5	2					Устный опрос
1.3	Графические методы описания равновесий	2		2				Устный опрос
2	Кислотно-основные (протолитические) равновесия							
2.1	Общая характеристика кислотно- основных систем	1						Устный опрос

2.2	Расчет равновесий в кислотно- основных системах		4				Выполнение домашних практических заданий
2.3	Графическое описание кислотно- основных равновесий		2			2	Выполнение домашних практических заданий, контрольная работа № 1 по темам 2.2 и 2.3
3	Равновесия комплексообразования						
3.1	Равновесия в растворах комплексных соединений	0,5					Устный опрос
3.2	Расчет равновесий комплексообразования		4				Выполнение домашних практических заданий
3.3	Графическое описание равновесий комплексообразования		2				Выполнение домашних практических заданий
4	Равновесия в растворах малорастворимых соединений (MPC)						
4.1	Растворимость MPC в жидкостях и ее расчет в различных случаях	0,5	4				Устный опрос, выполнение домашних практических заданий
4.2	Графическое описание растворимости МРС		2				Выполнение домашних практических заданий
4.3	Осаждение и маскирование в аналитической химии	1	2			2	Устный опрос, выполнение домашних практических заданий, контрольная работа № 2 по темам 4.1–4.3
5	Экстракционные равновесия						
5.1	Экстракция молекулярных форм неэлектролитов и псевдоэлектролитов	2	2	1			Устный опрос, выполнение домашних практических заданий

	Экстракция комплексов металлов и						Устный опрос, выполнение
5.2	ионных ассоциатов. Анионообменная	2	2	1			домашних практических
	экстракция						заданий
	Итого	10	26	4		4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Кондрев, В.С. Гомогенные ионные равновесия: методика решения задач: учеб.-метод. пособие / В.С. Кондрев. Минск: БГУ, 2021. 187 с.
- 2. Нарышкин, Д.Г. Равновесия в растворах электролитов. Расчеты с Mathcad: учебное пособие / Д.Г. Нарышкин, М.А. Осина, В.Ф. Очков. Санкт-Петербург: Лань, 2022. 180 с. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/212594 (дата обращения: 07.05.2025).

Дополнительная литература

- 1. Батлер, Дж.Н. Ионные равновесия / Дж.Н. Батлер ; пер. с англ. В.А. Станкевича, С.П. Бардеевой ; под ред. А.А. Пендина. Л. : Химия, Ленинградское отделение, 1973. 448 с.
- 2. Булатов, М.И. Расчеты равновесий в аналитической химии / М.И. Булатов. Л. : Химия, 1984. 184 с.
- 3. Гулевич, А.Л. Сложные химические равновесия : учеб. пособие для студ. хим. спец. вузов / А.Л. Гулевич. Мн. : БГУ, 2002. 103 с.
- 4. Гулевич, А.Л. Экстракционные методы разделения и концентрирования веществ: пособие для студентов хим. фак. спец. 1-31 05 01 «Химия (по направлениям)» / А.Л. Гулевич, С.М. Лещев, Е.М. Рахманько. Минск: БГУ, 2009. 159 с.
- 5. Марьянов, Б.М. Расчеты ионных равновесий: пособие по аналитической химии / Б.М. Марьянов. 3-е изд., перераб. и доп. Томск: Издво Том. ун-та, 2006. 152 с. Текст: электронный // Электронная библиотека (репозиторий) ТГУ. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000219267 (дата обращения: 07.05.2025).
- 6. Сергеева, О.В. Реакции в водных растворах: сложные ионные равновесия: конспект лекций / О.В. Сергеева. Минск: БГУ, 2007. 58 с.
- 7. Янсон, Э.Ю. Теоретические основы аналитической химии: учеб. для хим. фак. ун-тов / Э.Ю. Янсон. 2-е изд., перераб. и доп. М. : Высш. шк., 1987. 304 с.
- 8. Burgot, J.-L. Ionic equilibria in analytical chemistry / J.-L. Burgot. New York : Springer New York, 2012. 772 р. Текст : электронный // SpringerLink. URL: https://link.springer.com/book/10.1007/978-1-4419-8382-4 (дата обращения: 07.05.2025).
- 9. Scholz, F. Chemical equilibria in analytical chemistry. The theory of acidbase, complex, precipitation and redox equilibria / F. Scholz, H. Kahlert. Cham: Springer Nature, 2019. 251 р. Текст: электронный // SpringerLink. URL: https://link.springer.com/book/10.1007/978-3-030-17180-3 (дата обращения: 07.05.2025).

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Для диагностики компетенций могут использоваться следующие средства текущей аттестации:

- 1. устный опрос в формате вопрос ответ;
- 2. выполнение домашних практических заданий;
- 3. написание контрольных работ по темам №№: 1) 2.2 и 2.3; 2) 4.1–4.3.

Формой промежуточной аттестации по дисциплине «Сложные химические равновесия» учебным планом предусмотрен зачет.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки в ходе проведения контрольных мероприятий текущей аттестации (примерные весовые коэффициенты, определяющие вклад текущей аттестации в отметку при прохождении промежуточной аттестации):

- результаты устного опроса и выполнения домашних практических заданий -50%;
 - контрольные работы 50%.

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (модульно-рейтинговой системы оценки знаний) — 40% и отметки на зачете — 60%.

Примерный перечень заданий для управляемой самостоятельной работы

Тема 2.3. Графическое описание кислотно-основных равновесий (2 ч)

Задание 1. Построить распределительную диаграмму для кислоты или основания и оценить по ней равновесные концентрации частиц в 0,1 М водном растворе этих веществ при указанном рН.

Задание 2. Построить концентрационно-логарифмическую диаграмму для водного раствора вещества или смеси веществ и определить по ней рН этого раствора.

Форма контроля – контрольная работа).

Тема 4.3. Осаждение и маскирование в аналитической химии (2 ч)

Задание 1. Рассчитать растворимость малорастворимого соединения в водном растворе с учетом протекания побочных реакций ионов.

Задание 2. Определить минимальную концентрацию маскирующего реагента, обеспечивающую полноту маскирования одного из ионов при их избирательном осаждении в заданных условиях.

(Форма контроля – контрольная работа).

Примерный перечень практических занятий

Практическое занятие № 1. Принципы работы в программе Wolfram Mathematica. Возможности программы для решения задач химического содержания.

Практические занятия № 2 и № 3. Универсальные методы расчета рН через составление систем уравнений и уравнения электронейтральности.

Практическое занятие № 4. Графическое описание кислотно-основных равновесий.

Практические занятия № 5 и № 6. Расчет равновесных концентраций частиц при комплексообразовании.

Практическое занятие № 7. Графическое описание равновесий комплексообразования.

Практические занятия № 8 и № 9. Расчет растворимости МРС в различных случаях. Расчет минимальной растворимости МРС.

Практическое занятие № 10. Графическое описание растворимости MPC.

Практическое занятие № 11. Осаждение и маскирование в аналитической химии.

Практическое занятие № 12. Расчет экстракционных равновесий в растворах молекулярных форм веществ.

Практическое занятие № 13. Расчет равновесий при экстракции металло-комплексов, ионных ассоциатов и в анионообменных экстракционных системах.

Примерная тематика семинарских занятий

Семинарское занятие № 1. Графические методы описания равновесий. Семинарское занятие № 2. Экстракционные равновесия.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используются практико-ориентированный подход и метод группового обучения.

Практико-ориентированный подход предполагает:

- освоение содержания образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- ориентацию на генерирование идей, реализацию групповых студенческих проектов, развитие предпринимательской культуры;
- использование процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Метод группового обучения представляет собой форму организации учебно-познавательной деятельности обучающихся, предполагающую функционирование разных типов малых групп, работающих как над общими, так и специфическими учебными заданиями.

Методические рекомендации по организации самостоятельной работы

При самостоятельной работе студенты используют предоставленные им в электронной форме учебную программу и учебные пособия по дисциплине, методические указания к решению расчетных задач, примерные задачи для подготовки к зачету, а также сторонние информационные и онлайн-ресурсы, рекомендованные преподавателем. Контроль осуществляется в форме устного опроса на аудиторных занятиях, выполнения домашних практических заданий, контрольных работ.

Помимо этого, в рамках самостоятельной работы студентам в качестве индивидуального задания предлагается найти два-три примера реальных исследований ионных и экстракционных равновесий с использованием физико-химических методов анализа, проведя для этого поиск информации в оригинальных научных статьях, как русскоязычных (отечественных), так и зарубежных. Контроль осуществляется на одном из последних аудиторных занятий в виде заслушивания устных докладов студентов.

Примерный перечень вопросов к зачету

Письменный зачет представляет собой набор из четырех расчетных задач, охватывающий все изученные типы равновесий. В данном списке приведены примерные задачи, аналогичные разобранным на практических занятиях.

Примеры задач по кислотно-основным равновесиям

- 1. Рассчитать рН водного раствора, содержащего $1,0\cdot10^{-4}$ М оксалата аммония и $1,0\cdot10^{-3}$ М ацетата натрия.
- 2. Рассчитать pH раствора, полученного смешением равных объемов $0,02~\mathrm{M}$ растворов трилона Б и дигидрофосфата натрия. Как изменится pH этого раствора, если к нему прибавить равный объем $1,20\cdot10^{-3}~\mathrm{M}$ соляной кислоты?
- 3. Построить распределительную и концентрационно-логарифмическую диаграммы для 0,02 M раствора лимонной кислоты. Как изменится вид диаграмм, если концентрацию кислоты уменьшить в 20 раз?

Примеры задач по равновесиям комплексообразования

- 1. Рассчитать равновесные концентрации всех частиц, если к раствору, содержащему 0,02 М сульфата меди и 0,04 М сульфата цинка, прибавить равный объем 0,20 М раствора аммиака. Изменением рН пренебречь.
- 2. Как изменится (рассчитать до и после) равновесная концентрация комплекса $Fe(SCN)_3$, если в раствор, содержащий по 0.05~M~Fe(III) и SCN^- , прибавить твердый фторид натрия до его общей концентрации 0.01~M?
- 3. Построить распределительную диаграмму и кривую образования для гидроксокомплексов бериллия. Рассчитать рН, при котором молярная доля комплекса BeOH⁺ будет максимальна.

Примеры задач по равновесиям в растворах МРС

- 1. Рассчитать растворимость хлорида серебра в его насыщенном растворе, содержащем 0,10 M NaCl и 0,01 M аммиака при рН 10. Учесть дополнительно в расчетах ионную силу раствора, образование гидроксокомплексов серебра и диссоциацию аммиака.
- 2. Построить зависимость десятичного логарифма растворимости $Cr(OH)_3$ от pH. Найти значение pH, при котором растворимость гидроксида хрома(III) минимальна.
- 3. Возможно ли полное осаждение ионов серебра в виде осадка AgCl в 0,01 M растворе аммиака и какова при этом должна быть концентрация хлоридионов?

Примеры задач по экстракционным равновесиям

- 1. В экстракционной системе «дипропиловый эфир вода» коэффициент распределения бензойной кислоты при рН 6,0 равен 2,5, а коэффициент распределения *n*-нитрофенола при рН 10,0 равен 1,2. Рассчитать рН, при котором фактор разделения этих двух веществ достигает 400, и оценить эффективность разделения.
- 2. Константы распределения HgI_2 и CdI_2 в экстракционной системе «диэтиловый эфир водный раствор KI» равны 500 и 100 соответственно. Рассчитать оптимальные концентрации иодид-ионов, при которых наблюдается максимальная экстракция иодидов ртути и кадмия, а также максимальные значения коэффициентов распределения Hg и Cd.
- 3. Константа экстракции ионного ассоциата $\mathrm{Kt}^+\mathrm{HgBr}_3^-$, где в качестве катиона выступает кристаллический фиолетовый, из воды в хлороформ составляет $1,0\cdot10^6$. Рассчитать концентрацию бромид-ионов, обеспечивающую максимальный коэффициент распределения ртути и его численное значение. Равновесная концентрация красителя составляет $1,0\cdot10^{-2}$ М.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в	кафедрой,
дисциплины,		содержании учебной	разработавшей
с которой		программы	учебную программу
требуется		учреждения высшего	(с указанием даты и
согласование		образования по учебной	номера протокола)
		дисциплине	
Учебная			
дисциплина не			
требует			
согласования			

Заведующий кафедрой аналитической химии доктор химических наук, доцент

_wf

М.Ф.Заяц

15.05.2025

дополнения и изменения к учебной программе уо

№ п/п	Дополнения и изменения	Основание
Учебна	я программа пересмотрена и одо	брена на заседании кафедры
	(проте	окол № от 202_ г.)
Заведун	ощий кафедрой	
	ЖДАЮ	
Декан ф	ракультета	
		