БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского росударственного университета

А.Д.Король

27 июня 2025 г.

Регистрационный №УД- 13932/уч.

НАНОХИМИЯ

Учебная программа учреждения образования по учебной дисциплине для специальностей:

1-31 05 03 Химия высоких энергий

1-31 05 04 Фундаментальная химия

Учебная программа составлена на основе ОСВО 1-31 05 03-2021, учебного плана N_{\odot} G 31-1-009/уч от 25.05.2021 и ОСВО 1-31 05 04 -2021, учебного плана N_{\odot} G 31-1-010/уч от 25.05.2021.

составители:

Д.И.Муравский, старший преподаватель кафедры неорганической химии химического факультета Белорусского государственного университета; **Т.Н.Воробьева**, профессор кафедры неорганической химии химического факультета Белорусского государственного университета, доктор химических наук, профессор.

РЕЦЕНЗЕНТ:

В.Б.Оджаев, заведующий кафедрой физики полупроводников и наноэлектроники, физический факультет Белорусского государственного университета, доктор физико-математических наук, профессор

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой неорганической химии БГУ (протокол № 10 от 06.06.2025); Научно-методическим советом БГУ (протокол № 11 от 26.06.2025)

Заведующий кафедрой

Д.В.Свиридов

J.B. Kobawaya-Ravrencuse

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

«Нанохимия» Дисциплина относится К дисциплинам компонента высшего образования. Уникальность свойств веществ наноразмерном масштабе обеспечивает большой интерес специалистов из различных областей химии, физики и биологии к наноматериалам и их Внедрение наноматериалов в инновационные технологии применениям. (оптоэлектроника, фотовольтаика, биомедицина и др.) требует от современных специалистов-химиков владения знаниями зависимости наноматериалов от их структурных и размерных характеристик, методах получения наноматериалов и исследования их свойств, а также использовании наноматериалов в разнообразных применениях.

Цели и задачи учебной дисциплины

Цель учебной дисциплины — ознакомить студентов с основными достижениями нанотехнологии, нанообъектами (кластерами, наночастицами, квантовыми точками и др.), особыми свойствами вещества в наноразмерном состоянии, методами изучения и способами получения индивидуальных наночастиц, принципами объединения их в ансамбли и создания на этой основе наноструктур с определенными функциональными свойствами.

Изучение раздела «Электронная микроскопия и электронография» призвано обеспечить подготовку студентов к исследованию микроструктуры и морфологии ультрадисперсных и наноструктурных объектов разной структурной организации и химического состава. К исследуемым объектам относятся порошки, дымы, аэрозоли, суспензии и коллоидные растворы, а также массивные объекты — пленки и покрытия, монокристаллы, поли- и нанокристаллические твердые тела различной химической природы. Этот раздел дисциплины носит научноприкладной характер. Студенты изучают теоретические основы взаимодействия быстрых электронов с веществом, знакомятся с экспериментальными методами подготовки разнообразных объектов к исследованию методами электронографии (ЭГ), просвечивающей электронной микроскопии (ПЭМ), а также с принципами обработки информации, полученной этими методами.

Задачи учебной дисциплины:

- 1. Получение студентами фундаментальных знаний и представлений о зависимости физических и химических свойств вещества от количества атомов в его частице, об особенностях наноразмерного состояния, химических способах получения наночастиц и наноструктурированных материалов, объединения наночастиц в функциональные ансамбли;
- 2. Получение студентами фундаментальных знаний и представлений о природе взаимодействия быстрых электронов с веществом и использование этих знаний для изучения формы, размера и взаимного расположения частиц в материалах разной структурной организации, включая наноструктурные твердофазные объекты, золи и суспензии, а также для исследования морфологии поверхности и структурных дефектов в твердых телах;
- 3. Формирование у студентов синтетического научного мировоззрения, основанного на объединении знаний из различных областей науки;

- 4. Формирование навыков и умений для проведения научных исследований с применением современных инструментальных методов, включая такие этапы, как грамотная постановка задачи, подготовка объектов для проведения исследований методами ЭГ и ПЭМ и интерпретация полученных результатов, что важно для подготовки студентов к научной деятельности и к современным способам оценки качества продукции;
- 5. Подготовка студентов к последующему выполнению курсовых и дипломных работ, магистерских и кандидатских диссертаций.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к модулю «Современные направления химической науки» (специальность Фундаментальная химия) и «Современная теоретическая химия» (специальность Химия высоких энергий) компонента учреждения высшего образования.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др. Успешное изучение данной дисциплины возможно при наличии знаний по дисциплинам «Химия твердого тела», «Физическая химия», «Неорганическая химия», «Кристаллохимия», а также таких тем курса физики, как электромагнетизм и оптика.

Требования к компетенциям

Освоение учебной дисциплины «Нанохимия» должно обеспечить формирование следующей *специализированной* компетенции:

Характеризовать фундаментальные принципы организации наноструктур, основные способы получения наноматериалов, рентгенографические и электронномикроскопические методы, применяемые для установления фазового состава, морфологии, формы, размеров наночастиц.

В результате освоения учебной дисциплины студент должен:

знать:

- фундаментальное отличие свойств вещества в наноразмерном состоянии от свойств массивного вещества;
- основные способы получения наночастиц углерода, металлов и полупроводников, основные принципы объединения их в ансамбли и наноструктуры, обладающие заданными свойствами и выполняющими определенные функции;
- эффекты, возникающие при уменьшении частиц вещества до наноразмера, в оптических, электрических, магнитных и химических свойствах углерода, металлов и полупроводников;
- свойства наночастиц углерода (фуллеренов, нанотрубок, наноточек, наноалмазов, графена), металлов, полупроводников и направления их возможного практического применения;
- основные методы исследования нанообъектов, особенности их использования и границы применимости;
- эффекты, возникающие при взаимодействии быстрых электронов с веществом, и способы их использования для получения информации о

морфологии поверхности, форме, размерах и взаимном расположении частиц вещества, об особенностях дефектной структуры веществ в твердом состоянии;

- принципы получения электронограмм и электронномикроскопических изображений и влияние разных факторов на их качество;
- способы подготовки объектов к проведению исследований методами электронографии и просвечивающей электронной микроскопии;

уметь:

- творчески применять знания из различных областей химии, физики, информатики, биологии, материаловедения для объяснения и предсказания свойств нанообъектов и наноструктур;
- выбирать подходящий метод исследования в зависимости от изучаемого нанообъекта;
- проводить подготовку образцов с учетом их природы, морфологии, поставленной задачи и выбранного метода исследования;
- грамотно интерпретировать и описывать результаты оптических и электронномикроскопических исследований нанообъектов;
- анализировать и систематизировать литературные данные, обрабатывать полученную теоретическую и экспериментальную информацию, описывать результаты проведенного исследования;

владеть:

- терминологией проблемного поля нанохимии;
- навыками постановки задачи и выбора метода исследования, подготовки объектов к исследованию изучаемыми методами, обработки полученной информации и представления результатов исследования.

Структура учебной дисциплины

Дисциплина изучается в 9 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Нанохимия» отведено для очной формы получения высшего образования — 102 часа, в том числе 54 аудиторных часа: лекции — 22 часа, лабораторные занятия — 24 часа, семинарские занятия — 8 часов. Из них:

Лекции — 22 часа, лабораторные занятия — 24 часа, семинарские занятия — 4 часа, в том числе управляемая самостоятельная работа (УСР) — 4 часа.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1 Нанотехнология как основное стратегическое направление развития человеческой деятельности в XXI веке. Проблемное поле нанохимии

Тема 1.1 Введение. Роль нанотехнологий в современном мире

Особенности нанопроблематики, ее связь с другими областями науки. Перспективы применения достижений нанотехнологии в материаловедении и производстве материалов, электронике и вычислительной технике, биологии и медицине, аэронавтике и космических исследованиях, энергетике и химической промышленности, охране окружающей среды и др. Естественные и искусственные нанотехнологии. Возможные экологические и социальные последствия применения нанотехнологий.

Тема 1.2 Нанохимия как наука

Этапы становления нанохимии как науки. Проблемное поле нанохимии. Объекты изучения нанохимии: кластеры, наночастицы, наноструктуры, структуры с квантово-размерным эффектом. Критерии классификации нанообъектов. Подходы к созданию наноматериалов. Особенности структурной организации нанообъектов. Уникальные свойства наноматериалов и причины их возникновения.

Раздел 2 Особые свойства вещества в наносостоянии

Тема 2.1 Внутренний размерный эффект и свойства наноматериалов

Причины возникновения размерных эффектов. Внутренний и внешний размерный эффект. Проявление внутреннего размерного эффекта в свойствах наноматериалов. Особенности структуры механические И наноматериалов. Зависимость твердости наноматериалов от размера частиц. Ротационное Холла-Петча. разупрочнение сверхпластичность. И Термодинамические особенности поведения наночастиц. Проблемы термодинамического описания наносистем. Термодинамика реакций с участием нанофаз. Фазовый размерный эффект. Классическая термодинамика с учетом вклада поверхностной энергии. Нанотермодинамика Хилла. Статистическая термодинамика наносистем. Химическая термодинамика супрамолекул (нанотермодинамика Русанова). Квантово-механические методы описания наносистем. Теоретические модели плавления наночастиц. Влияние формы наночастиц на температуру плавления. Размерные эффекты в кинетике. Зависимость химической активности и реакционной способности вещества от размера и формы образующих его частиц. Размерный эффект и химические свойства кластеров и наночастиц. Роль состояния поверхности и поверхностных реакций в нанохимии. Наноразмерный катализ. Зависимость каталитических свойств кластеров от их строения и размера. Возможности молекулярного дизайна активных центров. Каталитические свойства наночастиц металлов и полупроводников.

Тема 2.2 Внешний размерный эффект и свойства наноматериалов

Условия возникновения внутреннего размерного эффекта. Особенности полупроводниковых нанокристаллов. структуры размерный эффект в полупроводниковых нанокристаллах. История открытия эффекта. Размернозависимые оптические квантово-размерного полупроводниковых нанокристаллов. Условия возникновения локализованного поверхностного плазмонного резонанса. Размерный эффект и оптические свойства плазмонных наночастиц (наноплазмоника). Факторы, влияющие на спектральные характеристики плазмонных наночастиц. Размерный эффект и свойства оптические наночастиц с диэлектрическими Ми-резонансами. Оптический магнетизм. Изменение магнитных свойств наночастиц зависимости размера. Суперпарамагнетизм. Гигантское ОТ Размерный эффект И электрические свойства магнетосопротивление. наночастиц.

Раздел 3 Методы получения вещества в ультрадисперсном состоянии

Тема 3.1 Общие подходы к получению наноматериалов. Физические методы получения наноматериалов

Общее представление о термодинамике И кинетике процессов зародышеобразования и роста зародышей твердой фазы. Возможности управления структурой твердых тел при выращивании монокристаллов, пленок, порошков путем регулирования пересыщения (переохлаждения) в системе. Общие принципы выращивания монокристаллов, поликристаллических и Классификация эпитаксиальных пленок. методов синтеза Принципы снизу-вверх и сверху-вниз. Механические способы диспергирования. Физические методы, основанные на испарении и конденсации. Метод электрического взрыва проводников. Метод сушки вымораживанием и др.

Тема 3.2 Химические методы синтеза наноматериалов

Обзор наиболее распространенных химических методов твердофазных материалов. Возможности модификации этих методов для получения наночастиц. Механохимический синтез. Детонационный синтез. Криохимический синтез. Гидротермальный и сольвотермический синтез. восстановление, термическое Твердофазное разложение, в жидкой фазе. Электрохимический синтез. восстановление гетерофазных системах (в микроэмульсиях, обратных мицеллах, межфазный синтез). Синтез в полимерах и дендримерах. Радиационно-химические методы (радиолиз, импульсный радиолиз, фотолиз). Использование других видов излучения (СВЧ, ультразвук) в синтезе наночастиц. Золь-гель-метод и его модификации. Формирование наночастиц в ходе коллоидно-химического синтеза. Модель Ла-Мера. Принципы получения монодисперсных частиц. Методы обеспечения коллоидной устойчивости наночастиц. Возможности управления размером и формой наночастиц при использовании различных методов синтеза. Получение наногетерочастиц типа ядро-оболочка и полых наночастиц.

Раздел 4 Создание наноструктур и ансамблей наночастиц. Самоорганизация

Tema 4.1 Методы создания одномерных и двумерных ансамблей наночастиц

Понятие о самосборке и самоорганизации. Простейшие способы создания (испарение медленная наночастиц капли, дестабилизации ансамблей коллоидных дисперсий и др.). Особенности формирования наноструктур различной размерности (одно-, дву-, трехмерных). Создание одномерных наноструктур (нанопроволоки, наностержни, нанотрубки). Темплатный синтез. Роль модификаторов роста при создании наноструктур анизотропной формы. Механизм роста наноструктур «пар-жидкость-кристалл». Создание двумерных наноструктур. Молекулярно-лучевая эпитаксия. Особенности формирования эпитаксиальных наноструктур. Метод осаждения наночастиц из коллоидного раствора. Самоорганизованные монослои. Методы Ленгмюра-Блоджетт и Ленгмюра-Шефера. Молекулярная самоорганизация и самосборка материалов. Понятие об иерархических структурах. Молекулярное и ионное наслаивание. Метод осаждения атомарных слоев на подложках и коллоидных наночастицах. Полиэлектролитные самоорганизованные монослои. Электрофоретическое осаждение наночастиц.

Тема 4.2 Трехмерные наноструктуры. Использование биомолекул и литографических методов для создания наноструктур

Самоорганизация в трехмерные структуры. Коллоидные кристаллы. Искусственные опалы. Использование биомолекул в синтезе наноструктур. Биомиметика. Литографические методы создания наноструктур. Электронно- и ионно-лучевая нанолитография. Применение методов фотолитографии для создания наноструктур. Коллоидная литография наносферами. Нанопечатная литография. Мягкая литография. Перьевая нанолитография. Оптическая нанопечать.

Раздел 5 Нанохимия углерода

Тема 5.1 Кластеры углерода, фуллерены, углеродные нанотрубки и их производные: синтез, свойства и применения

Малые кластеры углерода, кремния и бора. Фуллерены, история открытия, способы получения и разделения. Физические и химические свойства фуллеренов, проблема стабильности малых фуллеренов. Фуллероиды. Фуллериды. Экзо- и эндоэдральные фуллерены. Нековалентная модификация фуллеренов. Получение и основные перспективы использования производных фуллеренов. Углеродные нанотрубки, особенности строения, однослойные и многослойные нанотрубки. Взаимосвязь хиральности углеродных нанотрубок и их физических свойств. Основные способы получения и очистки углеродных нанотрубок. Химические свойства углеродных нанотрубок. Модификация углеродных нанотрубок (заполнение внутренних полостей, внедрение атомов и

молекул в многослойные трубки, прививка функциональных групп к поверхности трубок). Углеродные нанотрубки как матрицы. Создание ансамблей из углеродных нанотрубок.

Тема 5.2 Графен, углеродные наноточки и наноалмазы: синтез, свойства и применения

Графен и его связь с другими углеродными наноматериалами. Основные методы получения, свойства и применения графена и его производных. Классификация углеродных наноточек по составу, структуре и природе люминесцентных свойств. Методы получения углеродных наноточек. Квантоворазмерный эффект в графеновых наноточках и его проявление в оптических свойствах. Оптические свойства аморфных углеродных наноточек. Влияние поверхностных состояний на оптические свойства углеродных наноточек. Применения углеродных наноточек. Адамантоиды. Ультрадисперсные алмазы. Основные методы получения, свойства и применения наноалмазов.

Раздел 6 Нанохимия металлов

Тема 6.1 Синтез, свойства и применения кластеров и наночастиц металлов

Особенности криосинтеза кластеров металлов. Свойства и применения кластеров металлов. Роль низкотемпературных реакций в стабилизации атомов и малых кластеров металлов в изучении необычных химических реакций с их участием. Свойства кластеров и наночастиц металлов различных групп Периодической системы. Методы направленного синтеза и стабилизации наночастиц металлов с заданными морфологией и размером. Способы регулирования размера и формы плазмонных наночастиц металлов при использовании различных методов синтеза. Получение наночастиц металлов анизотропной формы, частиц ядро-оболочка. Ансамбли наночастиц металлов. Колориметрические биосенсоры на основе плазмонных наночастиц металлов. Усиление сигнала в спектроскопии гигантского комбинационного рассеяния с помощью плазмонных наноматериалов. Использование плазмонных наночастиц в фотокатализе и фотоэлектрокатализе. Применение плазмонных наночастиц в биомедицине и нанофотонике.

Раздел 7 Нанохимия полупроводников

Tema 7.1 Получение и оптоэлектронные свойства квантово-размерных полупроводниковых нанокристаллов

Способы получения и особые свойства квантово-размерных полупроводниковых наночастиц. Ключевые направления развития методов синтеза квантово-размерных полупроводниковых наночастиц (синтез с использованием в качестве стабилизаторов тиолов, ТОР – ТОРО синтез, получение наногетерочастиц ядро-оболочка; слоистых сферических частиц – систем "Quantum Dot Quantum Wells"). Особенности применения этих подходов при синтезе наночастиц полупроводников различных классов. Элементарные

полупроводники (кремний и германий). Оксидные и халькогенидные системы. Управление структурными и оптическими свойствами полупроводниковых нанокристаллов методами коллоидно-химического синтеза. Методы получения и оптоэлектронные свойства квантово-размерных нанокристаллов анизотропной формы. Квантово-размерные полупроводниковые гетеронанокристаллы. Полупроводниковые нанокристаллы ядро-оболочка: синтез и оптоэлектронные свойства.

Тема 7.2 Применения полупроводниковых квантово-размерных нанокристаллов. Свойства и применения субмикронных полупроводниковых наночастиц

Применение полупроводниковых нанокристаллов в дисплейных технологиях и источниках света. Фотовольтаические устройства и солнечные батареи на основе квантовых полупроводниковых нанокристаллов. Квантовые полупроводниковые нанокристаллы в качестве флуоресцентных меток для высокочувствительного иммуноанализа. Фотокатализ и фотокаталитические системы на основе полупроводниковых наночастиц. Методы создания и применения ансамблей квантовых полупроводниковых нанокристаллов и гибридных наноструктур на их основе. Фотонные кристаллы: оптические свойства и применения. Фотонные чернила. Наноструктуры с оптическими диэлектрическими Ми-резонансами. Перспективы применения наночастиц полупроводников и наноструктур на их основе.

Раздел 8 Методы исследования наноматериалов

Тема 8.1 Оптические методы исследования в нанохимии

Спектрофотометрия в ультрафиолетовом-видимом диапазоне. Спектрофлуориметрия в режиме фотолюминесценции и возбуждения фотолюминесценции. Время-разрешенная фотолюминесцентная спектроскопия. Методы оптической микроскопии. Метод динамического рассеяния света. Метод электрофоретического рассеяния света.

Тема 8.2 Фазовый анализ вещества методом электронографии

(ЭΓ). электронографии Задачи. решаемые методом Природа Дифракция взаимодействия электронов c веществом. электронов кристаллической решетке твердофазных веществ. Общие представления о принципе работы электронографа. Создание пучка быстрых электронов в высоком вакууме. Требования к пучку электронов. Принципы получения электронограмм на «просвет» и на «отражение». Типы электронограмм и влияние на них структурной организации исследуемого объекта. Уравнение Вульфа-Брегга в электронографии. Определение межплоскостных расстояний. Точность определения параметров кристаллической решетки методом ЭГ. Разрешающая способность метода. Факторы, определяющие ширину линий и рефлексов на электронограммах; причины уширения линий. Факторы, влияющие на интенсивность линий и/или рефлексов на электронограммах. Применение ЭГ для исследования фазового состава неорганических веществ разной структурной организации (золи и суспензии, дымы и аэрозоли, порошки, тонкие пленки, монокристаллы, поликристаллические твердые тела). Пленкиподложки для препарирования ультрадисперсных объектов. Подготовка
массивных объектов к ЭГ-исследованию: способы механического, химического,
электро- и плазмохимического изготовления тонких слоев, получение тонких
пленок методом термического испарения в вакууме. Достоинства и недостатки
ЭГ в сравнении с другими дифракционными методами исследования, их
причины. Место метода ЭГ среди других методов исследования структуры и
фазового состава твердых тел.

Тема 8.3 Просвечивающая электронная микроскопия

Задачи, решаемые методом просвечивающей электронной микроскопии (ПЭМ). Диффузное рассеяние электронов веществом. Принципы получения изображений объектов с использованием пучка быстрых электронов в просвечивающем электронном микроскопе. Использование корпускулярных свойств электронов для получения увеличенных картин диффузного и дифракционного рассеяния. Представление об электромагнитных линзах и методе регулирования увеличения изображений. Контраст изображения и определяющие его факторы: природа вещества (порядковый номер элементов, заряд в узлах кристаллической решетки, плотность), толщина анализируемых слоев или величина частиц. Общие сведения об устройстве электронного микроскопа просвечивающего типа. Методы визуализации информации. Представления о разрешающей способности и влиянии на нее различных факторов. Сферическая и хроматическая аберрация электромагнитных линз. Функции диафрагм. Препарирование образцов для исследования. Подготовка к исследованию дисперсных объектов (золи и суспензии, дымы и аэрозоли, порошки, наноструктурные объекты) методами прямого препарирования. Изготовление реплик поверхности дисперсных и массивных объектов: одно- и двухступенчатые реплики, приемы растворения исследуемого объекта и механического отслаивания реплик. Сочетание прямых и косвенных методов препарирования для исследования гетерогенных систем. Выбор методики препарирования в зависимости от природы и микроструктуры исследуемых объектов. Влияние методики препарирования на контраст изображения, способность реплик, характер получаемой информации. разрешающую обработка результатов ПЭМ Количественная (гистограммы и распределения частиц по размерам). Место ПЭМ среди других методов исследования морфологии поверхности массивных и дисперсных объектов, дефектной структуры твердотельных материалов, формы и размеров частиц неорганических веществ в дисперсном состоянии.

Раздел 9 Исследования по нанохимической проблематике, проводимые в Республике Беларусь и за рубежом. Экологический аспект нанотехнологии. Подведение итогов

Тема 9.1 Тенденции развития нанонауки и нанотехнологии в мире и в Республике Беларусь. Влияние наноматериалов на окружающую среду и здоровье человека Современное состояние исследований по нанопроблематике. Мировые научные группы. Перспективы научных разработок в области нанотехнологий. Актуальные проблемы нанохимии. Основные направления исследований по нанопроблематике в Республике Беларусь. Научные организации и программы. Окислительно-восстановительные процессы в светочувствительных слоях на основе галогенидов серебра. Получение наноразмерных частиц металлов и материалов на их основе для различных применений. Наноструктурированные оксидные и гидроксидные системы. Катализаторы и газовые сенсоры, пленочные структуры, формируемые различными способами. Структуры с квантоворазмерными эффектами на основе халькогенидов металлов и др. Постановка проблемы и оценка рисков при использовании наночастиц и наносистем в различных областях человеческой деятельности, охрана труда в отраслях, использующих нанотехнологии. Воздействие наночастиц на окружающую среду и живые организмы. Нанотоксикология.

Тема 9.2 Подведение итогов

Основные термины, понятия и концепции нанохимии как науки. Размерные эффекты в нанохимии. Методы получения наноматериалов. Создание наноструктур и ансамблей наночастиц. Нанохимия углерода. Нанохимия металлов. Нанохимия полупроводников. Методы исследования наноматериалов.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

4		Кс	личеств	о аудито	рных ча	асов	OB	Форма контроля
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	
1	2	3	4	5	6	7	8	9
1	Нанотехнология как основное стратегическое направление развития человеческой деятельности в XXI веке. Проблемное поле нанохимии							
1.1	Введение. Роль нанотехнологий в современном мире	2						- F
1.2	Нанохимия как наука	2						обсуждение
2	Особые свойства вещества в наносостоянии							
2.1	Внутренний размерный эффект и свойства наноматериалов							обсуждение,
2.2	Внешний размерный эффект и свойства наноматериалов	4						устный опрос
3	Методы получения вещества в ультрадисперсном состоянии							

3.1	Общие подходы к получению наноматериалов. Физические методы получения наноматериалов	2					2	обсуждение, творческое задание
3.2	Химические методы синтеза наноматериалов	2						
4	Создание наноструктур и ансамблей наночастиц. Самоорганизация							
4.1	Методы создания одномерных и двумерных ансамблей наночастиц							обсуждение, контрольная работа
4.2	Трехмерные наноструктуры. Использование биомолекул и литографических методов для создания наноструктур	4						
5	Нанохимия углерода							
5.1	Кластеры углерода, фуллерены, углеродные нанотрубки и их производные: синтез, свойства и применения	4					1	обсуждение, эссе
5.2	Графен, углеродные наноточки и наноалмазы: синтез, свойства и применения							• • • • • • • • • • • • • • • • • • • •
6	Нанохимия металлов							
6.1	Синтез, свойства и применения кластеров и наночастиц металлов	2					1	обсуждение, эссе
7	Нанохимия полупроводников							
7.1	Получение и оптоэлектронные свойства квантоворазмерных полупроводниковых нанокристаллов	4		1				

7.2	Применения полупроводниковых квантово-размерных нанокристаллов. Свойства и применения субмикронных полупроводниковых наночастиц			обсуждение, устный опрос, контрольная работа
8	Методы исследования наноматериалов			
8.1	Оптические методы исследования в нанохимии	1		обсуждение, устный опрос, эссе
8.2	Фазовый анализ вещества методом электронографии			
8.2.1	Препарирование объектов для исследования методом электронографии (ультра- и нанодисперсные объекты, массивные твердые тела)		4	письменный отчет о выполнении лабораторной работы, устный опрос
8.2.2	Определение фазового состава вещества по его электронограмме		2	письменный отчет о выполнении лабораторной работы, устный опрос
8.3	Просвечивающая электронная микроскопия			
8.3.1	Препарирование серии модельных образцов для электронномикроскопического исследования прямыми методами и методами реплик		6	письменный отчет о выполнении лабораторной работы, устный опрос
8.3.2	Качественное и количественное описание результатов исследования методом ПЭМ. Принцип действия электронного микроскопа просвечивающего типа		6	письменный отчет о выполнении лабораторной работы,

						собеседование, контрольная работа
8.3.3	Исследование серии образцов методом электронной микроскопии			6		письменный отчет о выполнении лабораторной работы, презентация результатов исследования
9	Исследования по нанохимической проблематике, проводимые в Республике Беларусь и за рубежом. Экологический аспект нанотехнологии. Подведение итогов					
9.1	Тенденции развития нанонауки и нанотехнологии в мире и в Республике Беларусь. Влияние наноматериалов на окружающую среду и здоровье человека		1			устное выступление с презентацией, обсуждение
9.2	Подведение итогов		1			обсуждение, контрольная работа
	Всего часов	22	4	24	4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Введение в нанохимию: учебное пособие для вузов / Л.Н. Блинов, И.Л. Перфилова, В.В. Полякова, А.В. Семенча, Н.И. Крылов 2-е изд., стер. Санкт-Петербург: Лань, 2024.-80 с.
- 2. Поленов Ю.В. Физико-химические основы нанотехнологий: учебник для вузов / Ю.В. Поленов, Е.В. Егорова 2-е изд., стер. Санкт-Петербург: Лань, 2023. 180 с.

Дополнительная литература

- 1. Тарасевич, Ю.Г. Термодинамика наноразмерных систем: пособие / Ю. Г. Тарасевич. Гродно : ГрГУ, 2022. 49 с.
- 2. Сергеева, О.В. Введение в нанохимию: пособие для студ. хим. фак. / О.В. Сергеева, С.К. Рахманов. Минск: БГУ, 2009. 177 с.
- 3. Раков, Э.Г. Неорганические наноматериалы: учебное пособие / Э.Г. Раков. 3-е изд. Москва: Лаборатория знаний, 2020.-480 с.
- 4. Лисичкин, Г.В. Химия поверхности неорганических наночастиц / Г.В. Лисичкин, А.Ю. Оленин, И.И. Кулакова. М.: Техносфера, 2020. 380 с.
- 5. Сергеев, Г.Б. Нанохимия / Г.Б. Сергеев. 2-е изд., испр. и доп. Москва: Изд-во Московского ун-та, 2007. 336 с.
- 6. Воробьева, Т.Н. Химия твердого тела: учеб. пособие для студ. хим. спец. учреждений, обеспеч. получение высш. образования / Т.Н. Воробьёва, А.И. Кулак. Минск: БГУ, 2004. 148 с.
- 7. Старостин, В.В. Материалы и методы нанотехнологий: учеб. пособие / В.В. Старостин; под общ. ред. Л.Н. Патрикеева. 2-е изд. Москва: БИНОМ. Лаборатория знаний, 2017. 431 с.
- 8. Дьячков, П.Н. Электронные свойства и применение нанотрубок / П. Н. Дьячков. М.: БИНОМ. Лаборатория знаний, 2020.-488 с.
- 9. Наноструктуры в биомедицине / под ред. К. Гонсалес, К. Хальберштадт, К. Лоренсин, Л. Наир; пер. с англ. 4-е изд., электрон. М.: Лаборатория знаний, 2020.-538 с.
- 10. Хартманн, У. Очарование нанотехнологии / У. Хартманн; пер. с нем. 5-е изд. Москва: Лаборатория знаний, 2021. 176 с.
- 11. Елисеев, А.А. Функциональные наноматериалы: учеб. пособие / А.А. Елисеев, А.В. Лукашин; под ред. Ю.Д. Третьякова. Москва: ФИЗМАТЛИТ, 2010.-452 с.
- 12. Витязь, П.А. Основы нанотехнологий и наноматериалов: учеб. пособие для студ. технических ун-тов / П.А. Витязь, Н.А. Свидунович. Минск: Вышэйшая школа, 2010. 302 с.
- 15. Артемьев, М.В. Новые неорганические соединения и материалы на основе микро- и наноразмерных частиц: получение, свойства, применение / М.В. Артемьев, А.И. Лесникович, О.А. Ивашкевич; БГУ. Минск: БГУ, 2015. 151 с.

- 16. Материалы и методы нанотехнологий: учеб. пособие / А.А. Ремпель, А.А. Валеева. Екатеринбург: Изд-во Урал. ун-та, 2015. 136 с.
- 17. Современные методы исследования конденсированных материалов: Курс лекций для студ. физич. и хим. фак. / В.Б. Оджаев, Д.В. Свиридов, И.А. Карпович, В.В. Понарядов; В авт.ред. Мн.: БГУ, 2003. 82 с.
- 18. Суздалев, И. П. Нанотехнология. Физико-химия нанокластеров, наноструктур и наноматериалов / И.П. Суздалев. Изд. стер. Москва: URSS: Либроком, 2019.-589 с.
- 19. Власов, А.И. Электронная микроскопия : учеб. пособие / А.И. Власов, К.А. Елсуков, И.А. Косолапов. М. : Изд-во МГТУ им. Н. Э. Баумана, 2011. 168 с.
- 20. Андреева, В.Д. Электронная микроскопия материалов: учеб. пособие / В.Д. Андреева, И.И. Горшков. СПб.: Изд-во Политехн. ун-та, 2016. 139 с.
- 21. Морозова К. Н. Основы электронной микроскопии: учебное пособие для вузов. -2-е изд. М.: Юрайт, 2022. 84 с.
- 22. Галлямов М.О. Методы оптической и электронной микроскопии: классический университетский учебник. М.: МГУ, 2024. –224 с.
- 23. Ozin, G.A. Nanochemistry. A chemical approach to nanomaterials / G.A. Ozin, A.C. Arsenault, L. Cademartiri. RCS Publishing, 2023. 874 p.
- 24. Prospects of colloidal nanocrystals for electronic and optoelectronic applications // D. Talapin [et al.] / Chem. Rev. 2010. Vol. 110. P. 389–458.
- 25. Present and future of surface-enhanced Raman scattering / J. Langer [et al.] // ACS Nano. 2020 Vol. 14, No 1. P. 28-117.
- 26. Amirjani, A. Plasmon-enhanced photocatalysis based on plasmonic nanoparticles for energy and environmental solutions: a review / A. Amirjani, N. B. Amlashi, Z. S. Ahmadiani // ACS Appl. Nano Mater. − 2023. − Vol. 6, № 11. − P. 9085−9123.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Объектом диагностики компетенций студентов являются знания, умения, полученные ими в результате изучения учебной дисциплины. Выявление учебных достижений студентов осуществляется с помощью мероприятий текущей и промежуточной аттестации.

Для диагностики компетенций могут использоваться следующие средства текущей аттестации: устный опрос; контрольная работа; творческое задание; эссе; обсуждение; устное выступление с презентацией; собеседование; письменный отчет о выполнении лабораторной работы; презентация результатов исследования.

Формой промежуточной аттестации по дисциплине «Нанохимия» учебным планом предусмотрен экзамен.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей

обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки в ходе проведения контрольных мероприятий текущей аттестации (примерные весовые коэффициенты, определяющие вклад текущей аттестации в отметку при прохождении промежуточной аттестации):

- устные выступления с презентацией 10 %;
- творческое задание, эссе -25%;
- выполнение и защита лабораторных работ -25%;
- письменные контрольные работы по отдельным темам -40%.

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (модульно-рейтинговой системы оценки знаний) — 40 % и экзаменационной отметки — 60 %.

Примерный перечень заданий для управляемой самостоятельной работы

Тема 3.1 Общие подходы к получению наноматериалов. Физические методы получения наноматериалов.

Тема 3.2 Химические методы синтеза наноматериалов (2 ч)

Пример творческого задания.

Изучите обзор «Методы синтеза магнитных наночастиц» на сайте educhem.bsu.by. Распределите упомянутые в обзоре методы синтеза на диспергационные и конденсационные. Студенческая группа делится на две близкие по численности команды: А и Б, каждая команда разбивается на подгруппы по 1-3 человека. Каждая подгруппа из команды А разрабатывает и обосновывает структуру и принцип действия, а подгруппы из команды Б — методику создания одного из предложенных устройств, причем в качестве одного из структурных элементов этих устройств должны быть магнитные наночастицы:

- 1. Устройство для записи и хранения больших объемов информации
- 2. Биосенсор для экспресс-диагностики вирусных инфекций
- 3. Наноробот для фототермической терапии онкологического заболевания
- 4. Сенсор для экспресс-определения ионов тяжелых металлов в сточных водах

На занятии подгруппы представляют свои решения в виде устных выступлений с презентацией длительностью до 5 мин. После этого подгруппы из команд А и Б должны охарактеризовать решения друг друга, выявить их сильные и слабые стороны. При подготовке рекомендуется использовать современные литературные данные (соответствующие ссылки представлены в обзоре).

(Форма контроля – творческое задание).

- Тема 5.1 Кластеры углерода, фуллерены, углеродные нанотрубки и их производные: синтез, свойства и применения.
- Tema 5.2 Графен, углеродные наноточки и наноалмазы: синтез, свойства и применения.
- Tema 6.1 Синтез, свойства и применения кластеров и наночастиц металлов (2 ч)

Написание эссе по тематике, связанной с синтезом, свойствами и применениями наноматериалов на основе углерода и металлов. Примеры тем эссе:

- 1. Фуллерены: получение, структура и применения
- 2. Ковалентная модификация фуллеренов. Использование фуллеренов в биомедицине
 - 3. Оптические свойства и применение углеродных наноточек
- 4. Получение соединений фуллеренов с металлами. Их свойства и применения
- 5. Методы синтеза тубуленов с заданной хиральностью. Хиральность тубуленов и их оптоэлектронные свойства
 - 6. Методы химической модификации тубуленов
 - 7. Области применения тубуленов
 - 8. Получение, свойства и применения графена и его производных
 - 9. Получение, свойства и применения наноалмазов
 - 10. Методы синтеза, структура и стабильность кластеров С, Si и В
- 11. Методы получения плазмонных наночастиц металлов анизотропной формы
 - 12. Особенности получения, свойства и применения кластеров металлов
 - 13. Методы синтеза, структура и стабильность кластеров С, Si и В
- 14. Возможности и ограничения цитратного метода и метода Браста-Шиффрина в синтезе плазмонных наночастиц металлов
- 15. Колориметрические биосенсоры на основе плазмонных наночастиц металлов
- 16. Плазмонные наночастицы металлов в спектроскопии гигантского комбинационного рассеяния
 - 17. Использование плазмонных наночастиц металлов в фотокатализе
- 18. Диспергационные методы получения плазмонных наночастиц металлов: достоинства и недостатки
- 19. Использование плазмонных наночастиц металлов в фототермической терапии онкозаболеваний
- 20. Применение плазмонных наночастиц металлов в солнечных батареях
 - 21. Применения плазмон-усиленной фотолюминесценции в сенсорике (Форма контроля эссе).

Примерный перечень лабораторных занятий

- 1. Препарирование объектов для исследования методом электронографии (ультра- и нанодисперсные объекты, массивные твердые тела). Определение фазового состава вещества по его электронограмме
- 2. Препарирование серии модельных образцов для электронномикроскопического исследования прямыми методами и методами реплик
- 3. Качественное и количественное описание результатов исследования методом ПЭМ. Принцип действия электронного микроскопа просвечивающего типа
 - 4. Исследование серии образцов методом электронной микроскопии

Примерная тематика семинарских занятий

- 1. Получение и оптоэлектронные свойства квантово-размерных полупроводниковых нанокристаллов. Применения полупроводниковых квантово-размерных нанокристаллов. Свойства и применения субмикронных полупроводниковых наночастиц. Оптические методы исследования в нанохимии
- 2. Тенденции развития нанонауки и нанотехнологии в мире и в Республике Беларусь. Влияние наноматериалов на окружающую среду и здоровье человека. Подведение итогов

Описание инновационных подходов и методов к преподаванию учебной дисциплины

Преподавание учебной дисциплины «Нанохимия» предусматривает проведение лекций, семинарских, лабораторных занятий. Организация учебного процесса по дисциплине «Нанохимия» предполагает использование ряда инновационных подходов и методов: обучающе-исследовательского, эвристического, практико-ориентированного, развития критического мышления, метода анализа конкретных ситуаций (кейс-метод).

Учебный организованный процесс, на основе обучающепринципа, исследовательского призван формировать студентов исследовательские умения, аналитический характер мышления, творческий подход к решению разнообразных задач, умение работать в коллективе в процессе изучения программного материала. При проведении семинарских занятий преподаватель формулирует открытые задания, которые становятся применяя предметом обсуждения, эвристический практикоориентированный Одновременно подходы. развиваются навыки критического мышления, связанные с пониманием научной информации и способами ее трансформации. При организации лекционных и семинарских занятий применяется кейс-метод, предполагающий рассмотрение примеров реальных научно-исследовательских задач и анализ конкретных проблемных ситуаций на основе информации преподавателя и литературных источников, собственного опыта.

Методические рекомендации по организации самостоятельной работы

При организации самостоятельной работы студентов по учебной дисциплине «Нанохимия» наряду с традиционными источниками информации (учебники и учебные пособия, в том числе и подготовленные преподавателями современные используются информационные БГУ) И ресурсы. образовательном портале educhem.bsu размещены учебно-программные материалы, презентации лекций, учебные материалы для подготовки к лекционным, лабораторным И семинарским занятиям, задания самостоятельной подготовки к семинарским занятиям, задания УСР, вопросы для подготовки к экзамену, список рекомендуемой литературы. При выполнении ряда заданий требуется также осуществлять поиск и критический анализ учебной информации на химических сайтах в сети Интернет.

Задания УСР по учебной дисциплине составляются с учетом индивидуальной подготовки студентов и могут быть представлены на разном уровне: от заданий, формирующих достаточные знания по изученному учебному материалу на уровне узнавания, к заданиям, формирующим компетенции на уровне воспроизведения, и далее к заданиям, формирующим компетенции на уровне применения полученных знаний. При этом сохраняется требование к освоению необходимого и достаточного объема учебного материала при освоении курса.

Примерный перечень вопросов к экзамену

- 1. Проблемное поле нанохимии. Объекты изучения и методы исследования. Критерии классификации нанообъектов.
- 2. Применение нанотехнологий в материаловедении, медицине, энергетике, аэронавтике, охране окружающей среды.
- 3. Особые свойства вещества в высокодисперсном состоянии. Условия и причины возникновения размерных эффектов. Внутренний и внешний размерный эффект.
 - 4. Размерные эффекты и механические свойства наносистем.
- 5. Термодинамические особенности поведения наночастиц. Подходы к описанию термодинамики наносистем.
 - 6. Размерные эффекты в кинетике и катализе.
- 7. Электронное строение полупроводниковых нанокристаллов. Квантово-размерный эффект. Оптические свойства полупроводниковых нанокристаллов.
- 8. Особенности оптических спектров наночастиц золота и серебра. Локализованный поверхностный плазмонный резонанс.
- 9. Оптические свойства наночастиц с диэлектрическими Мирезонансами. Оптический магнетизм.
- 10. Размерные эффекты и магнитные свойства наноматериалов. Суперпарамагнетизм. Гигантское магнетосопротивление.
- 11. Классификация методов синтеза наночастиц. Принципы снизу-вверх и сверху-вниз.

- 12. Механическое и механохимическое диспергирование. Метод взрыва проводника.
 - 13. Получение наноструктур методами PVD и CVD.
 - 14. Ионно-лучевой метод синтеза наноструктур.
 - 15. Сонохимический и сольвотермический методы синтеза наночастиц.
 - 16. Золь-гель метод синтеза наночастиц и его модификации.
 - 17. Радиационно-химические методы синтеза наночастиц.
- 18. Химическое восстановление в водном растворе как способ получения наночастиц металлов.
- 19. Термодинамика и кинетика коллоидно-химического синтеза наночастиц. Модель Ла-Мера.
- 20. Основные методы и особенности синтеза магнитных наночастиц металлов и оксидов металлов.
 - 21. Методы получения наночастиц «ядро-оболочка» и полых наночастиц.
- 22. Принципы получения монодисперсных наночастиц и способы их реализации. Стабилизация наночастиц. Функции стабилизаторов.
- 23. Синтез наночастиц в микроэмульсионных системах и межфазный синтез.
- 24. Понятие о самосборке и самоорганизации. Самоорганизованные монослои.
- 25. Простейшие способы создания ансамблей наночастиц. Методы создания 1D наноструктур.
- 26. Темплатный синтез. Получение наноструктур с упорядоченным расположением пустот.
- 27. «Мягкие» и «жесткие» матрицы. Анодный оксид алюминия и пористый кремний как темплаты в нанохимии.
 - 28. Синтез наночастиц в цеолитах, мицеллах, дендримерах.
 - 29. Получение наностержней по механизму пар жидкость кристалл.
 - 30. Физические и химические методы получения 2D- систем.
 - 31. Молекулярно-лучевая эпитаксия как способ создания наноструктур.
- 32. Методы осаждения из коллоидного раствора и электрофоретического осаждения для создания 2D наноструктур.
- 33. Получение тонких пленок по методу Ленгмюра-Блоджетт и Ленгмюра-Шефера.
- 34. Химическая сборка: молекулярное и ионное наслаивание, осаждения атомарных слоев.
- 35. Послойная самосборка противоположно заряженных полиэлектролитов.
 - 36. Методы создания 3D-наноструктур. Получение фотонных кристаллов.
 - 37. Использование биомолекул в синтезе наноструктур. Биомиметика.
 - 38. Литографические способы создания наноструктур.
 - 39. Нанопечатная литография. Мягкая литография.
 - 40. Перьевая нанолитография. Коллоидная литография наносферами.
- 41. Малые кластеры углерода. Фуллерены основные представители, строение, методы получения.

- 42. Химические свойства и применения фуллеренов.
- 43. Методы получения и выделения углеродных нанотрубок.
- 44. Модифицирование углеродных нанотрубок.
- 45. Хиральность и свойства углеродных нанотрубок. Применения углеродных нанотрубок.
 - 46. Графен. Получение, свойства, применение.
- 47. Методы получения, структура, оптоэлектронные свойства и применения углеродных наноточек.
- 48. Наноалмазы: методы получения, строение, применение. Детонационный синтез наноалмазов.
- 49. Кластеры металлов определение, методы получения, стабилизация. Магические и структурные кластеры.
- 50. Цитратный метод и метод Браста-Шиффрина для синтеза плазмонных наносфер металлов.
- 51. Особенности коллоидно-химического синтеза плазмонных наночастиц металлов анизотропной формы. Полиольный синтез нанокубов. Фотохимический синтез треугольных нанопластин.
 - 52. Препаративные методы синтеза наностержней золота и серебра.
- 53. Применение плазмонных наночастиц металлов в оптоэлектронике, биомедицине и фотокатализе.
 - 54. Высокотемпературный синтез полупроводниковых нанокристаллов.
- 55. Полупроводниковые нанокристаллы типа «ядро-оболочка»: синтез, свойства и применения.
- 56. Гидрофилизация поверхности полупроводниковых нанокристаллов $A^{II}B^{VI}$.
 - 57. Люминесцентные свойства квантовых точек $A^{II}B^{VI}$.
 - 58. Квантовые точки $A^{III}B^{V}$ получение, области применения.
- 59. Применения полупроводниковых нанокристаллов: дисплейные технологии и источники света, фотовольтаика, биомедицина и фотокатализ.
 - 60. Оптические свойства и применения фотонных кристаллов.
- 61. Метод динамического рассеяния света. Метод электрофоретического рассеяния света.
- 62. Методы оптической спектроскопии в нанохимии: спектрофотометрия и спектрофлуориметрия.
- 63. Задачи, решаемые с помощью электронографии и электронной микроскопии. Почему в качестве источника излучения для электронной микроскопии выбран именно пучок электронов, а не какого-либо другого электромагнитного излучения (УФ, ИК, рентгеновское, нейтронное)?
- 64. Достоинства и недостатки электронографии В сравнении рентгенографией взаимодействия c учетом механизма электронов рентгеновского излучения с веществом. Какой из указанных методов исследования пригоден для определения фазового состава пленки продукта коррозии, образующейся на поверхности титановой пластины (толщина пленки 40 нм).

- 65. Факторы, определяющие толщину линий колец на электронограммах, обусловленные работой прибора. Причины уширения линий колец, обусловленного особенностями структуры образцов. Почему трудно получить точечные (а не размытые) рефлексы на электронограмме монокристалла?
- 66. Факторы, определяющие интенсивность дифракционного рассеяния электронов. Опишите характер изменения интенсивности линий колец на электронограммах с ростом угла дифракции. Объясните возможное несовпадение порядка распределения интенсивности линий колец на электронограмме со справочными данными.
- 67. Основные принципы расшифровки электронограмм. Уравнение Вульфа-Брэгга. Постоянная прибора, способ ее определения. Влияние структуры исследуемого объекта и ускоряющего напряжения электронографа на вид электронограммы.
- 68. Методы препарирования ультрадисперсных объектов для электронографического исследования. Предложите методы препарирования для этого исследования частиц дыма, коллоидного раствора, сплава на основе интерметаллического соединения.
- 69. Методы препарирования массивных объектов для электронографического исследования. Предложите методы препарирования для этого исследования тонкой пленки Si_3N_4 на поверхности монокристалла кремния, а также алюминиевой фольги (сплав алюминия, толщина 50 мкм), предназначенной для бытовых нужд.
- 70. Общие представления о принципе работы электронографа. Требования к пучку электронов. Объясните, почему важно выполнение этих требований и какими методами достигается их выполнение.
- 71. Получение электронограмм в режиме «на просвет» и «на отражение». Влияние толщины слоя образца, совершенства, размеров кристаллов и их ориентации на вид электронограмм.
- 72. Важнейшие характеристики электронограмм: точность определения положения узлов в кристаллической решетке, разрешающая способность, интенсивность линий. Их зависимость от характеристик прибора.
- 73. Разрешающая способность и увеличение электронных микроскопов просвечивающего типа в сравнении с этими характеристиками для сканирующих электронных микроскопов, оптических микроскопов. Можно ли увидеть в просвечивающем электронном микроскопе наночастицы серебра размером 2–3 нм, если препарат представляет собой углеродную реплику этих частиц? Ответ поясните.
- 74. Принцип действия электронного микроскопа просвечивающего типа. С помощью каких приемов невидимый пучок электронов трансформируется в видимое изображение? Как обеспечивается увеличение изображения? Каков диапазон увеличений и как переходят от одного увеличения к другому?
- 75. Устройство и принцип действия электронной пушки в электронном микроскопе. Требования, предъявляемые к пучку электронов. Обоснование необходимости вакуума в системе. Что произойдет при неправильной эксплуатации шлюзовой камеры и напуске воздуха в колонну микроскопа?

- 76. Особенности и механизм рассеяния электронов, рентгеновского излучения и нейтронов веществом. Принципы использования этих особенностей в электронной микроскопии для формирования и увеличения изображения объектов. Почему не существует микроскопия с использованием в качестве источника излучения нейтронов?
- 77. Разрешающая способность электронного микроскопа просвечивающего типа. Важнейшие факторы, связанные с устройством электронного микроскопа просвечивающего типа, которые определяют его разрешающую способность. Способы исправления аберрации линз.
- 78. Факторы, определяющие контраст изображения в просвечивающем электронном микроскопе. Сопоставьте контраст изображения частиц образца при прямом методе препарирования и их препарировании методом реплик. Как увеличить контраст при препарировании реплики массивного образца с гладкой поверхностью?
- 79. Количественная обработка результатов электронномикроскопического (ЭМ) исследования. Типы гистограмм, выбор типа гистограммы и величины классов при обработке ЭМ данных. Чем ограничивается число классов? В чем состоят затруднения при выборе (разработке) компьютерной программы гранулометрической обработки результатов ЭМ исследования?
- 80. Дайте обоснование выбора типа кривых распределения элементов по размерам, отражающих изменение рельефа поверхности полимера в процессе обработки, в результате которой образуются многочисленные ямки. Приведите примерный график с тремя кривыми, отражающими: 1) появление ямок, 2) увеличение их числа и размеров, 3) уменьшение их числа и увеличение размеров в результате слияния друг с другом.
- 81. Предложите методику препарирования образца для исследования методом просвечивающей электронной микроскопии. Изучается поверхность пленки, сформированной кристаллами оксида олова (IV), на которую нанесен катализатор из наночастиц золота с размерами, предположительно не превышающими 10 нм. Требуется определить форму, размеры и рельеф поверхности кристаллов SnO_2 , а также размеры наночастиц золота и их расположение на поверхности этих кристаллов.
- 82. Методом термического испарения в вакууме на поверхность слюды напылена пленка, состоящая из нанокристаллов PbI_2 и $CuCl_2$. Необходимо доказать наличие фаз обоих галогенидов и определить форму и размеры частиц каждого из них. Какие методы исследования образца подходят для решения поставленной задачи? Предложите методику (методики) препарирования.
- 83. Требования, предъявляемые к пленкам-подложкам в просвечивающей электронографии и электронной микроскопии, используемые в качестве пленок-подложек материалы и их сравнительная характеристика. Можно ли получить электронограмму, изучая углеродную реплику частиц меди? Можно ли изучить рельеф поверхности частиц меди при прямом препарировании (без изготовления реплики)? Ответ поясните.
- 84. Предложите возможные методы препарирования золя серебра для получения электронограммы и электронномикроскопического изображения.

Чем различаются режимы получения в электронном микроскопе электронограммы и электронномикроскопического изображения? Сопоставьте достоинства и недостатки использования для препарирования полимерных (каких именно?) и углеродных пленок-подложек.

- 85. Предложите три варианта препарирования для исследования методом просвечивающей электронной микроскопии поверхности полублестящей алюминиевой фольги. Какой из этих вариантов позволит получить изображения с наибольшим контрастом и наилучшим разрешением элементов рельефа поверхности? Ответ поясните.
- 86. Как, используя методы электронографии и электронной микроскопии, определить состав, размеры и форму частиц, содержащихся в выхлопных газах автомобиля? Предложите подходящие методы препарирования дыма. Какой тип гистограммы следует выбрать для описания гранулометрического состава дыма?
- 87. Сопоставьте понятие о разрешающей способности электронографа и просвечивающего электронного микроскопа. Назовите их возможные значения. Может ли повлиять на разрешающую способность электронномикроскопического изображения способ препарирования образца? Ответ поясните.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название учебной	Название	Предложения	Решение, принятое
дисциплины,	кафедры	об изменениях в	кафедрой,
с которой		содержании	разработавшей
требуется		учебной	учебную
согласование		программы	программу (с
		учреждения	указанием даты и
		высшего	номера протокола)
		образования по	
		учебной	
		дисциплине	
Супрамолекулярная	Кафедра	Предложения	Рекомендовать к
РИМИХ	неорганической	отсутствуют	утверждению
	химии		учебную
			программу
			(протокол № 10 от
			06.06.2025)
Теоретические	Кафедра	Предложения	Рекомендовать к
основы	неорганической	отсутствуют	утверждению
неорганической	ХИМИИ		учебную
химии			программу
			(протокол № 10 от
			06.06.2025)
			00.00.2023)

Заведующий кафедрой неорганической химии член-корреспондент НАН Беларуси, доктор химических наук, профессор

Д.В.Свиридов

06.06.2025

дополнения и изменения к учебной программе уо

на	/ учебный год	Į

No	Дополнения и изме	енения	Основа	ние
п/п				
Учебна	ая программа пересмотрена	а и одобрена н	а заседании кафе	дры
			OT	
Завелу	ющий кафедрой			
VTREE	РЖДАЮ			
	факультета			
	· · · · · · · · · · · · · · · · · · ·			