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Soil organic matter content change in the Minsk region of Belarus was inverted using 

Sentinel-2A multispectral remote sensing images in conjunction with information on 
measured soil organic matter content classes. After image preprocessing, characteristic bands 
were selected by correlation analysis and a multispectral model was constructed using a 
gradient boosting classifier for the inversion of soil organic matter content in the study area. 
The study can provide technical support and reference for dynamic monitoring of soil organic 
matter content. 
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Introduction. Soil organic matter (SOM) is an important parameter of soil 

quality, which can provide various nutrients for agricultural crops and has an 
important influence on elemental epigenetic geochemical characteristics. As a 
precious soil resource, the organic matter content of black soil is an important 
parameter reflecting soil quality [1-2]. In recent years, with the gradual 
degradation of black soil, the organic matter content of soil has decreased 
significantly, so it is important to estimate the organic matter content of black 
soil to reverse the declining trend of the content, which is an important measure 
for the protection of black soil [3]. The traditional monitoring of soil organic 
matter is mainly through the collection of a large number of field soil samples 
and indoor chemical experiments in the monitoring area for inversion, this 
method is long, time-consuming and labour-intensive, and the accuracy is 
controlled by the density of the samples, which is difficult to meet the needs of 
the rapid development of modern agriculture [4]. With the increasing maturity 
of remote sensing technology, the determination of soil organic matter content 
through the spectral difference of organic matter content has become an 
effective means. 

The remote sensing inversion of soil organic matter content mainly 
consists of two research directions: the processing and selection of spectral 
information and the construction of inversion models. Spectral processing 
methods such as inverse, logarithmic, and de-complex line transformation are 
often used, but the selected organic matter characteristic bands vary according 
to the image data sources. Qu Ran et al. [5] selected Landsat TM images to 
invert the organic matter content in Fuchuan County, Guangxi Zhuang 

mailto:geozhao@outlook.com


290 

Autonomous Region, and found that the organic matter content of the soil had 
the highest correlation with the DN values of Landsat TM bands 5 and 7. Chen 
Debao et al.[6] used Landsat 8 remote sensing images to model the organic 
matter in the black soil area of Nong'an County, and showed that the short-wave 
infrared B6 band reflectance was the best fitted model. Chen Siming et al. [7] 
reconstructed the Landsat 7 soil spectra with linear spectral separation, and 
concluded that the reconstructed spectra could significantly enhance the 
correlation with soil organic matter content and improve the accuracy of soil 
organic matter inversion. In previous studies, linear regression and partial least 
squares regression (PLSR) models have been used for soil organic matter 
inversion. Dhawale et al. [8] used the PLSR model with the organic matter 
content of soil samples and the corresponding soil reflectance, and the root-
mean-square error (RMSE) of the model did not exceed 2.24%. Ma Chi [9] 
compared the multiple regression models of different band combinations of 
Sentinel-2A remote sensing imagery, and the R2 was greater than 0.7. 
Currently, correlation analysis is mainly used for the selection of organic matter 
sensitive bands, and most of the inverse models are fitted linearly. In the present 
study, we used Sentinel-2A remote sensing images, combined with the 
measured soil organic matter content in Minsk Region, to study the relationship 
between the organic matter content of the soil surface and the remote sensing 
images through Sperman rank correlation analysis, and modelled by Gradient 
Boosting Classifier, so as to achieve the high-precision and rapid inversion of 
the soil organic matter on the ground. 

Data acquisition and processing. The Minsk Region, located in central 
Belarus, spans approximately 40,800 square kilometers and includes agricultural 
land, forests, grasslands, and urban areas. In this paper, based on the data of soil 
types in Minsk region of Belarus, 500 points were randomly selected as the study 
area using Python language, where half of the data were used in the training set 
and the other half in the validation set for accuracy evaluation. The specific study 
area and sample training set are shown in Figure 1. Sentinel-2A imagery was 
selected from the study area in March 2024 during a period of bare soil and no 
snow, with 0 % cloud cover. The image preprocessing includes geometry 
correction, atmospheric correction, image inlay and image cropping. In order to 
improve the correlation between soil organic matter and spectral reflectance (R), 
the remote sensing images were processed by inverse (1/R), logarithmic (lgR), 
power function (Ra), first-order differentiation (FDR), second-order 
differentiation (SDR) and inverse logarithmic first-order differentiation (FDLR). 

Algorithmic principle. Spearman’s rank correlation is a non-parametric 
statistical method used to measure the strength and direction of a monotonic 
relationship between two variables. Unlike Pearson’s correlation, Spearman’s 
method does not assume linearity or normal distribution of the data, making it 
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suitable for non-linear relationships. The core idea is to rank the raw values of 
the two variables, X and Y, transforming them into ranks Ri and Si. The 
Spearman correlation coefficient, denoted as 𝜌, is calculated as: 

 𝜌 = 1 − 6𝛴(𝑅𝑖−𝑆𝑖)2𝑛(𝑛2−1)                 (1) 
 

where n is the number of data points, and (Ri−Si)2 is the squared difference in 
ranks for each observation. 

ρ=1: Perfect positive monotonic correlation. 
ρ=−1: Perfect negative monotonic correlation. 
ρ=0: No monotonic correlation. 

 
Fig. 1. Study area and sample points 
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Spearman’s rank correlation is robust against outliers since it uses rank 
values instead of raw data, and it excels in identifying relationships that may 
not be linear but are monotonic in nature. 

Gradient Boosting Classifier(GBC) is a widely used ensemble machine 
learning algorithm designed to improve the accuracy and robustness of 
predictive models. It works by combining the outputs of multiple weak learners, 
typically shallow decision trees, in an iterative manner to create a strong 
predictive model. The process begins by fitting a simple base model, such as 
predicting the mean value in regression tasks or the most common class in 
classification tasks. In subsequent iterations, each new tree is trained to 
minimize the errors, or residuals, made by the current model. These residuals 
are treated as pseudo-responses, with the new tree learning how to correct the 
previous predictions. The model is updated by adding the predictions of the new 
tree, weighted by a learning rate, to the cumulative prediction. This iterative 
process is guided by the gradient of a specified loss function, such as log loss 
for classification or mean squared error for regression. By successively reducing 
the loss, the GBT classifier achieves higher accuracy with each iteration. The 
learning rate controls the contribution of each tree, and hyperparameters such 
as the number of trees, maximum tree depth, and regularization terms help 
balance model complexity and performance. Gradient Boosting Trees are 
particularly effective at handling non-linear relationships and complex 
interactions among features, making them versatile for a wide range of 
applications. Proper tuning of parameters ensures the model avoids overfitting 
and generalizes well to unseen data. The ability to optimize arbitrary 
differentiable loss functions and its inherent robustness make the GBT classifier 
a cornerstone of modern machine learning. 

Inversion of soil organic matter content. The correlation between soil 
organic matter content and reflectance of Sentinel-2A remote sensing images 
and their transforms was calculated under SPSS 27. As shown in Fig. 2, organic 
matter content and spectral reflectance are negatively correlated, but the 
correlation is not high, and the highest values of correlation coefficients of 
different mathematical transforms of different bands appear in the FDLR 
transform, which indicates that this preprocessing method can effectively 
improve the correlation between reflectance and soil organic matter in  
Sentinel-2A. The bands that passed the significance tests of the different 
mathematical transforms were used as the characteristic bands for the inversion, 
and the transforms with the highest correlation coefficients were combined as a 
kind of response band reference. 

After selecting the feature bands and performing the relevant mathematical 
transformations, the appropriate band information is selected for classification 
by Gradient Boosting Classifier. The classifier features are trained as follows, 
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number Of Trees: 200, shrinkage: 0.1, sampling Rate: 1.0, maxNodes: 16. A 
training sample of soil organic matter in the study area is obtained after 
processing in Google Earth Engine using this method. With the training sample 
as shown in the figure, the result of hierarchical classification of soil organic 
matter content in the study area has an accuracy of 68 %.  

 

 
Fig. 2. Sentinel 2A bands and their mathematical variant forms with soil organic matter  

Spearman rank correlation analysis 
 
Conclusion. The reflectance of Sentinel-2A multispectral remote sensing 

image was transformed by 1/R, lgR, Ra, FDR, SDR and FDLR, and the 
inversion of soil organic matter was realised by combining different models, 
which achieved good results. The following conclusions are drawn:  

1. The FDLR transformation model of reflectance fits the best when 
modelling by correlation analysis, and the combination of bands can effectively 
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improve the modelling accuracy of soil organic matter content in inversion. 2) 
The multispectral remote sensing image spectra of soil organic matter can be 
used for the inversion of soil organic matter content in different models. 

2. The spectral resolution of multispectral remote sensing images is low, 
so the linear fitting model cannot accurately estimate the soil organic matter 
content, and a nonlinear model is needed to effectively fit the spectral 
information to the organic matter content. 

3. Under the Gradient Boosting Classifier, the classification accuracy of 
soil organic matter content in the study area is 68%, but it shows the potential 
of this method for classification and extraction, and provides a new direction 
for the next research on soil organic matter. 
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