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УПРАВЛЕНИЕ ПРИЕМОМ ЗАКАЗОВ  
В СИСТЕМЕ ДОСТАВКИ ТОВАРОВ С УЧЕТОМ КОНЕЧНОЙ 
ВМЕСТИМОСТИ СКЛАДА В ПУНКТЕ ВЫДАЧИ ПОСЫЛОК

А. Н. ДУДИН1)

1)Белорусский государственный университет, пр. Независимости, 4, 220030, г. Минск, Беларусь

Аннотация. Доставка посылок в пункты выдачи товаров стала очень популярной в связи с быстрым разви-
тием интернет-торговли. Для эффективной работы интернет-торговли требуется создание новых моделей систем 
массового обслуживания. В настоящей статье процесс доставки товаров описывается как обработка посылки 
в двух зонах обслуживания. Обслуживание в первой зоне включает доставку посылки до пункта выдачи товаров, 
обслуживание во второй зоне – хранение посылки на складе до возможного ее получения клиентом. Вместимость 
склада является конечной. Если посылка прибывает на заполненный склад, то она теряется. В целях повышения 
эффективности работы системы доставки предлагается применять пороговое управление прие мом посылок в пер-
вой зоне. Система доставки анализируется при достаточно общих предположениях о процессе прибытия посылок. 
Анализ выполняется путем рассмотрения соответствующим образом построенной многомерной цепи Маркова 
с непрерывным временем. Устанавливается и численно иллюстрируется зависимость основных показателей 
производительности системы доставки от вместимости склада и порога управления доступом. Формулируется 
и решается задача оптимизации. 

Ключевые слова: система доставки посылок; пункт выдачи; тандемная очередь; управление доступом; много-
мерная цепь Маркова; марковский входной поток; оптимизация.
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ADMISSION CONTROL IN A PARCEL DELIVERY SYSTEM  
WITH ACCOUNT OF THE FINITE CAPACITY  

OF THE WAREHOUSE AT THE PICK-UP POINT

A. N. DUDIN a

aBelarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract. Parcels delivering via pick-up points have become very popular due to the fast development of online mar-
ketplaces, customer-to-customer markets, and the use of parcel lockers as the last mile delivery solution. An adequate 
modelling of such delivery systems requires the creation of novel queueing models. In this paper, the process of delivering 
is described as the processing of a parcel in two service areas. The first area corresponds to processing until the parcel’s 
arrival to the second area. The service in the second area corresponds to the storage of the parcel in a warehouse until it 
is picked up by a customer. The capacity of the warehouse is finite. A parcel arriving when the warehouse is full is lost. 
To enhance the efficiency of the system operation, threshold-type control by parcel admission at the first area is applied. 
Such a system is analysed under quite general assumptions about the parcel arrival flow. The analysis is implemented via 
consideration of the suitably constructed multidimensional continuous-time Markov chain. The dependence of the main 
performance measures of the delivery system on the warehouse capacity and the admission threshold are established and 
numerically illustrated. An optimisation problem is formulated and solved.

Keywords: parcel delivery system; pick-up point; tandem queue; admission control; multidimensional Markov chain; 
Markov arrival process; optimisation.

Introduction
As it is mentioned in [1], the business of parcel deliveries has been booming in recent years. From 64 bln 

parcels sent worldwide in 2016, the number of parcels has climbed up to over 161 bln in 2022 and it is forecast 
to reach 225 bln by 2028. Parcel delivery via the use of pick-up points, in particular the use of parcel lockers, 
is very popular as the solution for goods delivering by different online marketplaces (Amazon, eBay, Rakuten, 
Shopee, AliExpress, Etsy, Walmart, Mercado Libre, Wildberries, Ozon, etc.) and as the last mile delivery solu-
tion in a variety of out-of-home delivery. Therefore, the problem of enhancement of the organisation of this 
kind of delivery is intensively discussed in the existing literature (see, for example, [1– 4]). The respective case 
studies can be found in [5–9].

Due to the uncertainty and randomness of the moments of parcel delivery to the pick-up point and the time 
until parcel withdrawal by the customer after its delivery to the pick-up point, it is evident that adequate mathe-
matical models of parcel delivery processes can be constructed in terms of the theory of queues. Examples of 
application of this theory to this end can be found in [10 –12].

In this paper, we propose and investigate the mathematical model of the order (parcels, goods, foods, etc.) 
delivering to the pick-up point and its storage there until receiving by the customer. Thus, we suppose that 
the lifetime of an arbitrary customer’s order (parcel) in the delivery system consists of two parts, namely: 
(i) the time since the order generation in the system until its delivery to the target pick-up point and (ii) the 
sojourn time of the order in the warehouse of the target pick-up point until it is received by the customer or 
sent back to the sender. Correspondingly, an arbitrary order is sequentially processed in two service areas. 
The capacity of the se cond area, which models the pick-up point, is finite, and the orders arriving when it 
is exhausted are lost or returned to the sender. To mitigate the losses at the order entrance to this area, we 
propose the order admission control. New orders arriving in the first area are rejected if the total number 
of orders processed at two areas has the maximal admissible value (threshold). We explore the possibility of 
op timisation of operation of this delivery system via the proper choice of the capacity of the warehouse and 
the value of the threshold.

The rest of the text is organised as follows. The model of the order delivery is formulated in the queueing 
theory language in section «Mathematical model». The tridimensional Markov chain describing the operation 
of the delivery system is introduced, and its generator is derived in section «The Markov chain describing the 
system operation and its generator». Formulas for the main performance measures computation are presen-
ted in section «Performance measures computation». Numerical illustrations are given in section «Numerical 
examples», including examples of potential applications of the obtained results for managerial goals. Finally, 
section «Conclusions» concludes the paper.
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Mathematical model
The structure of the system under study is presented in fig. 1.

Area 1 accommodates the orders that are in the process of delivery to the pick-up point. Area 2 models the 
stay of the order which is ready for picking up in the warehouse of the target pick-up point.

The process of parcel (order) arrival to the system is modelled by the MAP flow defined by the matrices D0 
and D1 such that the matrix D D D1

0 1� � � �  is the generator of the irreducible Markov chain with a continuous 
time νt, t ≥ 0, having a finite state space 1, 2, , .�� �W  The matrix D1 consists of the intensities of transitions of 
the chain νt , t ≥ 0, accompanied by the receiving of an order. The non-diagonal elements of the matrix D0 
deter mine the intensity of the corresponding transition of the chain νt , t ≥ 0, without the receiving of an order, 
and the modules of the negative diagonal elements of the matrix D0 determine the intensity of the exit of the 
process νt from the corresponding state of the Markov chain νt.

The average order rate l is determined by the formula l = θD1e where θ is a row vector of the invariant 
probabilities of the Markov chain νt , t ≥ 0. This vector is the only solution to the system θD 1� � � 0, θe = 1. Here 
and below, 0 is a row vector of appropriate size consisting of zeros, and e is a column vector of appropriate size 
consisting of ones. Formulas for computation of other characteristics of the MAP, for example, the correlation 
coefficient of the successive interarrival times, variance, and higher moments of these times distribution, can 
be found in [13–18]. Let us also mention recent papers [19–29] devoted to the analysis of queues with the MAP.

Because the capacity of the real-world warehouses is limited, we assume that area 2 cannot accommodate 
more than K orders at the same time. Here, K is an arbitrarily fixed integer number. An order arriving when the 
area 2 capacity is exhausted, i. e. K orders are stored there, is not admitted to this area and is lost (sent back to 
the sender).

Due to this, aiming to reduce the probability of an arbitrary order loss after its service in area 1, it is desi-
rable to apply some kind of order admission control in this area. We suggest that the reasonable control policy 
is as follows. A certain threshold N such as N > K is fixed. An order arriving to area 1 is admitted for service if 
the total number of orders residing at the arrival moment in area 1 and area 2 is less than N. Otherwise, if this 
number is equal to N, the arriving order is rejected (lost at the entrance to area 1).

When the number of orders in the system at the arrival moment does not exceed N – 1, then a new order is 
admitted into the system, and the number of orders in area 1 increases by one; otherwise, the arriving order is lost.

The sojourn time of an order in area 1 (delivery time) is the exponentially distributed time with the para-
meter γ > 0. After this time expires, the order tries to enter area 2. If there are less than K orders residing in 
area 2 (the number of orders in the warehouse), the order arriving from area 1 is admitted for service in area 2. 
Otherwise, it is lost.

After the order is admitted to the warehouse, it is stored there the custo mer picks it up. The storage time of 
orders in the warehouse is limited. All customers of the system are divided into two groups. The first group is 
irresponsible customers that receive their orders only when the order storage time is almost complete. The second 
group is responsible customers who pick up their parcels earlier than the storage time runs out.

To take this into account, we assume that responsible customers pick up their orders after an exponentially 
distributed amount of time with the parameter µ > 0. The order residence time in area 2 (the storage time of 
the order at the warehouse) is limited and it has an exponential distribution with the parameter α ≥ 0. When this 
time finishes, with a probability p, an irresponsible customer picks up her order (the order is considered to be 
successfully serviced), and with the complementary probability, the order is lost (returned from the warehouse to 
the sender).

It is obvious that the value of the threshold N has a profound effect on the performance of the considered 
system. If N is too small, then many arriving orders are not admitted to the system, and, due to the randomness 
of the arrival and picking-up processes, the starvation of area 2 can occur. As a consequence, the warehouse 
is underutilised, and the throughput of the system is low. If N is too large, there exists a high risk of an order 
rejection at the entrance to area 2 due to the lack of the place in the warehouse. Such a rejection again reduces 
the throughput of the system and leads to the waste of the system resources spent for the rejected order service 

Fig. 1. The queueing system under study
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in area 1. Therefore, the value of the threshold N has to be chosen optimally with respect to some fixed crite-
rion. The main purpose of this paper is to provide an opportunity for computation of the optimal capacity K of 
the warehouse storage and the threshold N defining when the admission of new orders has to be temporarily 
suspended.

The Markov chain describing  
the system operation and its generator

Let the parameters K and N be fixed and let it be the number of orders in area 1, i Nt = 0 ,,  kt be the number 
of orders in area 2, k N i Kt t� �� �0, min , , νt be the state of the underlying process of the MAP, �t W�1, , at 
time t ≥ 0.

The behaviour of the system under study is described by a regular irreducible Markov chain with a conti-
nuous time 

� �t t t ti k t�� � �, , , .0

For easier analysis of this Markov chain, let us enumerate the states of the Markov chain in lexicographic 
order and call sub-level i k,� � the set of the states i k i k i k W, , , , , , , , , .1 2� � � � � � �  Level i is the set of sub-levels 
i i i N i K N, , , , , , min , , , .0 1 0� � � � � �� �� �

Theorem 1. The generator Q of the Markov chain ξt , t ≥ 0, has the following block tridiagonal structure: 

Q
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where the non­zero blocks Q i ji j, , ,� �1  containing the intensities of transitions from the states of level i to 
the states of level j are defined as follows: 

 Q I D i I C I C E I i N Ki i K K W K W K K W, ,� � � � �� � � � �� � � � � �� �� �
�

1 0 1
0 1� � � � � , ,  (1)

 
Q I D i I C E I I Di i N i N i W N i N i W N i, � � � � �� � � � � �

� �

� � � �� � � �
�

�1 0 1 1� � �

� �

^

�� � � � �� �
�C E I i N K NN i N i W , ,,

 
(2)

 Q I D i N Ki i K, ,� �� � � � �1 1 1 0 1, ,  (3)

 Q E D i N K Ni i N i, ,� �
�� � � � �1 1 1 , ,  (4)

 Q i E I i N Ki i W, ,�
�� � � �1 1� , ,  (5)

 Q i E I i N K Ni i N i W, , .� �
�� � � � �1 1�  ,  (6)

Here, ⊗ is the Kronecker product of matrices (see, for example, [30]); I is the identity matrix, and O is the zero 
matrix, with the dimensionality in a subscript if it is necessary; δcondition is the Kronecker delta, that is δcondition = 1 
if condition is true and δcondition = 0 otherwise; C ll � �� �diag 0 1 2, , , , , i. e. Cl is the diagonal matrix with the 
diagonal entries 0 1 2 0, , , , ,�� � �l l K, ; ^I l Kl , ,= 0,  is a square matrix of size l + 1 with all zero elements ex­

cept the element ^Il l l� � �
,
1;^Il l l� � �

,
1; E l Kl

� �, ,0,  is a square matrix of size l + 1 with all zero elements except the ele­

ments E k ll k k
�

�
� � � � �

,
,

1
1 1 1, ;  E l Kl

� �, ,1,  is a matrix of size l l�� � �1  with all zero elements except the 
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elements E k ll k k
�� � � � �

,
,1 0 1, ; E + is a square matrix of size K + 1 with all zero elements except the elements 

E k K
k k

�

�
� � � � �

,
,

1
1 0 1, , and E

K K
�� � �

,
1; E l Kl

� � �, ,0 1,  is a matrix of size l l�� � � �� �1 2  with all zero 

elements except the elements E k ll k k
�

�
� � � �

,
, .

1
1 0,

P r o o f. Proof of theorem 1 is performed via the analysis of all possible transitions of the Markov chain ξt 
during the time interval of an infinitesimal length. The block tridiagonal form of the generator is explained by 
the fact that the arrival and departure of the orders to area 1 occur one by one.

Let us first prove formulas (1) and (2) for the matrices Qi, i. The size of these matrices is defined by the 
cardinality of the state space of the two-dimensional process kt t, .�� �  The component νt has W possible states. 
The state space of the component kt depends on the value of the component it. If the number it of orders at 
area 1 is small, namely, i N Kt � � �0 1, , then the component kt admits the values in the range from 0 to K. 
If it > N – K – 1, then the component kt admits the values in the range from 0 to N – it. Correspondingly, the size 
of the matrices Qi, i is equal to K W�� � �1  if i N K� � �0 1,  and to N i W� �� � �1  if i N K N� � , .

The diagonal entries of these matrices are negative. The modules of these entries define the rates of the exit of 
the Markov chain ξt from its states. The exit from the state i k, , �� � is possible due to (i) service completion 
of one of i orders in area 1 (the corresponding rate is i γ), (ii) departure of one of k orders from area 2 (the cor-
responding rate is k � ��� �),  (iii) exit of the underlying process νt from its state (the corresponding rates are 
the modules of the diagonal entries of the matrix D0 ).

The non-diagonal entries of the matrices Qi, i define the rates of transition of the Markov chain ξt to another 
state without the change of the value i of the component it. There are only two variants of such transitions: 
(i) transitions of the underlying process νt (rates of which are defined by the non-diagonal entries of the mat-
rix D0 ), (ii) departure of one of k orders from area 2. The rates of the departure are equal to k � ��� �, and, as 
the consequence of this departure, the number kt of orders at area 2 decreases by one. Transition probabilities 
of the component kt from the state k to the state k k K� �1 1, , , are given by the entries of the matrix EK

− .
As the result of these considerations, we obtain formula (1). Formula (2) which is valid for i N K N� � ,  

is obtained via the same considerations. An additional summand ^I DN i� � 1 appears here because a new order 
arrival (the corresponding rates are given by the entries of the matrix D1) when the number of orders in area 2 
is equal to N – i (thus, the total number of orders in the system is equal to N) does not change the state of the 
system because this order is not admitted to the system.

The operation of the Kronecker product of matrices is used in (1), (2), and other formulas to describe tran-
sition rates of two independent Markov components kt t, �� � of the Markov chain ξt. 

Formulas (3), (4) are clear because the increase of the component it can occur only when a new order is admit-
ted to area 1 which happens with the rates defined by the entries of the matrix D1. A new order admission to area 1 
does not imply any change in the number of orders in area 2. This explains the presence of the Kro necker multi-
plier IK + 1 in formula (3), valid for i N K� � �0 1, . When i N K N� � �, ,1  the increase in the va lue i implies the 
reduction of the state space of the component kt of the chain. This reduction is implemented via the Kronecker 
multiplication of the matrix D1 from the left by the non-square matrix EN i−

− . This explains formula (4).
Transitions from the level i to the level i – 1 occur with the rate i γ when the service of one order at area 1 

finishes. If i N K� �0, , this order starts service at area 2, and the number of orders at this area increases by 1. 
The matrix E + describes transition probabilities of the component kt of the Markov chain ξt at this moment. 
When i N K N� � � 1, , the decrease in the value i implies the extension of the state space of the component kt 
of the chain. This extension is reflected by the non-square transition probability matrix EN i�

� .
As the result of these considerations, we obtain formulas (5) and (6).
Theorem 1 is proven.
Because the Markov chain ξt is irreducible and has a finite state space, the stationary probabilities of its 

states 
� � � � �i k P i i k k i N k N i K

t t t t, , lim , , , , , , min , , ,� � � � � �� � � � �� � �
��

0 0 1 WW,

exist for any set of the system parameters.
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Corresponding to the introduced enumeration of the states of the Markov chain ξt , let us introduce the row 
vectors π π  i k,� � of the stationary probabilities of the states that belong to the sub-level i k,� � and vectors ππi of the 
stationary probabilities of the states that belong to the level i. The vectors ππi, i N= 0, , satisfy the system of li near 
algebraic equations (Chapman – Kolmogorov equations) 

�� �� �� �� �� ��0 1 0 1 1, , , , , , , .�� � � �� � �N NQ 0 e
This system is finite. However, in potential real-life applications of the model, the capacity K of the ware-

house can be large, and the number of equations in this system can be large as well. Therefore, to solve this 
system it is necessary to use algorithms that effectively account for the block tridiagonal structure of the gene-
rator Q and the fact that the solution of the system represents a probability distribution. The numerically stable 
algorithms obtained in [31; 32] are recommended for further use.

Performance measures computation
Having an opportunity to compute the vectors ππi, i N= 0, ,  it is possible to calculate the values of the basic 

performance characteristics of the considered queueing model, in particular:
  • the mean number of orders residing at an arbitrary moment in area 1 

L i i
i

N

1

1

�
�
� �� e;

  • the mean number of orders residing at an arbitrary moment in area 2

L k i k
k

N i K

i

N

2

11

1

� � �
�

�� �

�

�

�� �� , ;

min ,

e

  • the mean number of orders processed at an arbitrary moment in the system 

L i k i k L L
k

N i K

i

N
� �� � � � � �

�

�� �

�
�� �� , ;

min ,

e
00

1 2

  • the rate of the output flow of serviced orders is 

� � �out � � �� �� � � �
�

�� �

�

�

�� k p i k
k

N i K

i

N
1

10

1

�� , ;

min ,

e

  • the loss probability of an order at the entrance to the system

 P i N i D
i N K

N

ent � �� �
� �
�1

1�
�� , ;e  (7)

  • the loss probability of an order when moving from area 1 to area 2

 P i i K
i

N K

loss, 1 2

1

1
�

�

�

� � ���
� �� , ;e  (8)

  • the loss probability of an order due to lack of demand by the customer (expiration of the storage time) 

 P pk i k
k

N i K

i

N

imp � � �
�

�� �

�

�

��1
10

1

�
��� , ;

min ,

e  (9)

  • the loss probability of an arbitrary order 
P P P Ploss ent loss, imp

out� � � � ��1 2 1
�
�
.

The latter relation giving two alternative ways for computation of Ploss is useful for verification of the ana-
lytical results and computer implementation of procedures for computing the invariant distribution of the sys-
tem states.

Formula (7) is valid because the loss of an order at the entrance occurs when the order sees N orders pre-

senting in the system. The components of the row vector 
i N K

N
i N i

� �
� �� ��� ,  define the distribution of states of 

the underlying process of arrivals at such an arrival moment. The column of vector 1
1l

D e defines the proba-
bilities of an order arrival at an arbitrary moment under the fixed state of the underlying process [17]. Now, 
formula (7) evidently follows from the formula of total probability.
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The probability Ploss, 1 2−  is computed as the ratio of the rate of the lost orders during their transfer from area 1 
to area 2 to the arrival rate which is equal to l. The rate of customers transfer from area 1 is proportional to the 
number of orders at this area. The loss of the customers, which transfer to area 2, can occur only if the number 
of orders at area 1 is less or equal to N – K while the number of orders at area 2 is equal to K. Therefore, the 

rate of the lost orders is 
i

N K
i i K

�

�

� � �
1

� �� , .e  Formula (8) is proven. 

The probability Pimp is also computed as the ratio of the rate of the customers which are lost due to ex-
piration of the storage time to the arrival rate l. Under the fixed numbers i k,� � of orders at areas 1 and 2, the 
rate of the loss is equal to pk α. By implementing summation of the products of these rates by the probabilities 
�� i k,� �e over the values of i k,� � under which the corresponding loss can happen we obtain formula (9). 

Numerical examples
The aims of this section are to demonstrate the feasibility of the proposed algorithms for computation of 

the basic performance characteristics of the system, graphical illustration of their dependencies on the para-
meters K and N, and to show the possibility to use the obtained result for managerial purposes.

Let the MAP flow of orders be determined by the matrices 

D D0 18 2
7 5 0 5

0 1 1 9
.� � �� � �

�

�
�

�

�
�diag , ,

. .

. .

This MAP has the mean arrival rate l equal to 3, the coefficients of correlation and variation of the succes-
sive interarrival times are ccor = 0.17 and cvar = 1.625 respectively.

The parameters of the exponential distributions of the service time of an order in area 1 (γ), the time till an 
order pick-up by the responsible customer (µ), and the storage time of an order at area 2 (α) are chosen as fol-
lows: γ = 0.03, µ = 0.02, α = 0.004. The probability p that an irresponsible customer picks up her order when 
the storage time expires is assumed to be equal to 0.03. 

We vary the parameter N in the interval 50 500,� � with step 50 and the parameter K in the interval 25, N� � 
with step 25.

The dependence of the average numbers L1 and L2 of orders at areas 1 and 2 on the parameters N and K is 
presented in fig. 2 and 3. 

Fig. 2. The dependence of L1 on the parameters N and K

Fig. 3. The dependence of L2 on the parameters N and K
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One can see from these figures that the numbers of orders at both areas grow with the increase in the system 
capacity N. The number of orders in area 1 decreases, and the number of orders in area 2 increases with the in-
crease in the parameter K. This can be explained as follows. The increase in K means that the capacity of area 2 
increases, and more orders can be stored in this area which leads to the increase in L2. At the same time, under 
the fixed value of N, the increase in the number of orders in area 2 leads to a shortness of capacity of area 1, 
and more arriving orders are rejected upon arrival. Thus, L1 decreases with the growth in K.

The dependence of the loss probability Pent of an order upon arrival on the parameters N and K is presented 
in fig. 4.

This probability increases with an increase in K and decreases with an growth in N. The reason for this is 
explained in the same way as for L1. Note that in the considered example for N = 500 the value of Pent is less 
than 2.6 ⋅ 10–12 for all values of K.

The dependence of the probability Ploss, 1 2−  of an order loss during the transfer from area 1 to area 2 on the 
parameters N and K is presented in fig. 5.

The loss probability Ploss, 1 2−  increases with the growth in the parameter N because an increase in N leads 
to an increase in the number of orders in area 1, and more orders arrive at area 2. Thus, when the capacity of 
the buffer K is not large, more orders are rejected due to the impossibility of placing them in area 2. When the 
capacity K increases, the loss probability Ploss, 1 2−  evidently decreases. In the considered example, for K  ≥ 275, 
the loss probability Ploss, 1 2−  becomes negligible (less than 10–10 ).

The dependence of the probability Pimp of an order loss due to the storage time expiration in area 2 on the 
parameters N and K is presented in fig. 6. This probability increases with the increase in N and K because this 
probability is strongly related to the number of orders L2 in area 2. Note that in the considered example, for 
large values of N and K, the loss probability Pimp takes the fixed value. This value shows us that in this example, 
regardless of how large capacities N and K are chosen, 0.5 % of orders are not picked up. When N and K are 
not large, this probability is less than 0.005 because the orders that won’t be picked up can be lost for other 
reasons (upon arrival or during the transfer between the areas).

The dependence of the total probability Ploss of an order loss on the parameters N and K is presented in fig. 7. 
The loss probability Ploss decreases with the growth in N and K since the increase in buffer capacities creates 
better conditions for orders, and fewer of them are lost.

Fig. 4. The dependence of Pent on the parameters N and K

Fig. 5. The dependence of Ploss, 1 2−  on the parameters N and K
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Having highlighted the dependencies of performance measures of the system on the parameters N and K, 
it is possible to formulate an optimisation problem. Let us assume that the cost criterion, which evaluates the 
quality of the system operation, has the following form: 

E E N K a c P c P c P dK� � � � � � � ��, .� � � �out ent loss, imp1 2 1 2 3

Here, a is the system’s revenue for each order service; c1 is the penalty for an order loss upon arrival; c2 is 
the penalty for an order loss due to the overflow of area 2; c3 is the penalty for an order loss due to sending it 
back; d is the charge that is paid for maintenance of one place in area 2 per unit of time. Thus, the criterion E 
defines the average revenue of the system per unit time.

In this example, let us fix the following values of the cost coefficients:
a = 2, c1 = 1, c2 = 10, c3 = 0.5, d = 0.01.

The dependence of the criterion E on the parameters N and K is presented in fig. 8.

Some additional information about the results of computation of the values of the cost criterion is presented 
in table.

Fig. 6. The dependence of Pimp on the parameters N and K

Fig. 7. The dependence of Ploss on the parameters N and K

Fig. 8. The dependence of the cost criterion E  
on the parameters N and K
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The results of computation of values of the cost criterion 
(values of criterion E N K,� � for different values of K,  

optimal value N K�� � of N for the given value of K,  
and values of the cost criterion E N K,� � for N = K and N = 500)

K N K�� � E N K K�� �� �, E K K,� � E K500,� �

25 50 –1.524 7 – –23.130 4
50 50 –3.419 1 –3.419 1 –16.310 7
75 75 0.173 2 0.173 2 – 9.616 4
100 150 1.600 9 – 0.070 7 –3.334 1
150 250 4.015 3 1.310 8 3.859 4
200 400 3.960 9 2.460 1 3.960 9
250 500 3.462 5 3.052 4 3.960 9
N o t e. For K  > 250, the optimal values of N K�� � are greater than 500.

Based on fig. 8 and table, we can conclude that the values of the criterion E strongly depend on the para-
meters N and K. For small values of K, due to the high probability of order rejection, the system’s revenue is 
negative, i. e. the system suffers losses. The value of the losses depends on the parameter N. A greater value of N 
implies greater losses for example: E = –3.626 798 for N = 50, E = –15.159 633 for N = 100, and E = –23.130 35 
for N  ≥ 250. 

When the parameter K of area 2 increases, the probabilities of order rejection decrease, and the throughput 
of the system increases, which implies the increase of the system revenue. If K = 50, then E = –1.524 699 for 
N = 50, E = –3.419 056 for N = 100, E = –12.891 237 for N = 150, E = –16.175 27 for N = 200 and E = –16.13 
for N  ≥ 250. However, starting from a certain value of K, the cost criterion stops the increase with the growth of 
K (due to the high payment for maintenance of the warehouse of a large capacity) and further decreases with 
the growth of K. The optimal value of the cost criterion E N K,� � in this example is equal to 4.165 264 and is 
achieved when K = 175 and N = 350.

Conclusions
In this paper, the process of a customer’s order delivery to the pick-up point and its stay there is described 

in terms of queueing theory. Each order has to be sequentially processed in two areas. Area 2 models the order 
maintenance in a warehouse of finite capacity before being picked up by the customer. To avoid overflow of 
the warehouse and sending the order back to the sender, order admission control in area 1 is proposed. This is the 
threshold type control. The arrival of orders to the system is described by a quite general Markov arrival process, 
which allows us to fit not only the mean arrival rate, as the stationary Poisson process does, but also the variance 
of interarrival times and their correlation in real-world systems. The existence of two types of customers, re-
sponsible and irresponsible, characterised by different distribution of time until an order withdrawal in pick-up 
point is taken into account.

Under the fixed values K of the capacity of the warehouse and admission control threshold N, the perfor-
mance of the order delivering system is evaluated via the analysis of a suitably constructed multidimensional 
Markov chain. The possibility of computation of the values of various performance measures and the solution 
of optimisation problems is numerically illustrated.

The obtained results can be extended to the delivery system with the batch arrival of orders and their group 
picking up. Retrials of the customers that failed to make the order due to the system overflow can be considered 
as well. The results can be used for solving more global problem of routing the flows of parcel in a network 
between the alternative neighbouring pick-up points aiming to optimally match the rates of flows to the capa-
cities of the warehouses at different pick-up points and their throughput.
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