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Annomayus. JlocTaBka NOCBIIOK B ITyHKTHI BBIJA9X TOBApOB CTaJIa OYEHb MOMYISPHOH B CBSI3M C OBICTPBIM Pa3BH-
THEM UHTEpHET-TOProBiu. [ 3 PeKTUBHOM pabOThl HHTEPHET-TOPTOBIN TPeOyeTCsl CO3/IaHNEe HOBBIX MOJEIICH CHCTEM
MaccoBoro oOcimykuBaHus. B HacTosmIel craTbe MPOLECcC JOCTABKM TOBAPOB OMHUCHIBAETCS KaK 00pabOTKa MOCHUIKH
B JIBYX 30HaX o0cyxuBanus. OOCITyKMBaHHE B IEPBOM 30HE BKJIOYAET TOCTABKY MOCBUIKH JI0 ITYHKTA BBIIa4H TOBapOB,
00cCITyKMBaHHE BO BTOPOI 30HE — XPaHEHNE MOCBUIKH Ha CKIIAJIE 10 BOZMOKHOTO €€ MOy4YeHHs KIIMeHTOM. BmecTiMocTh
CKJIaJia sBJIsETCS KOHEYHOW. Ecnu nmochuika mprObIBaeT Ha 3alOJIHEHHBIN CKJIaJl, TO OHA TepAeTCs. B MessiX MoBBIICHNS
3¢ PeKTHBHOCTH PaOOTHI CHCTEMBI IOCTABKH IPEUIATACTCS IPUMEHSTH TOPOr0BOE YIIPaBICHUE IIPHEMOM ITOCHUIOK B TIEp-
BO#i 30He. CHcTeMa JOCTaBKU aHAIU3UPYETCS ITPU JOCTATOUHO OOIIUX MPEITOIOKEHHUSX O TIPOIiecce NPUOBITHS MTOCHUIOK.
AHanu3 BBINOIHIETCS MyTEM PAacCCMOTPEHHs COOTBETCTBYIOIIMM 00pa3oM MOCTPOCHHONH MHOTOMEpPHOH menmu Mapkosa
C HETIPEPBIBHBIM BPEMEHEM. YCTAHABIMBACTCSI M YHCICHHO WILTIOCTPUPYETCS 3aBUCHMOCTh OCHOBHBIX IOKa3aTelei
TIPOM3BOUTEIEHOCTH CHCTEMBI JOCTAaBKA OT BMECTUMOCTH CKJIaJla M 1OPOTa YIpaBiIeHHs 1ocTyroM. Dopmynupyercs
U peraeTcs 3a7a4a ONTHMH3ALIH.
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ADMISSION CONTROL IN A PARCEL DELIVERY SYSTEM
WITH ACCOUNT OF THE FINITE CAPACITY
OF THE WAREHOUSE AT THE PICK-UP POINT

A. N. DUDIN*®

*Belarusian State University, 4 Niezaliezhnasci Avenue, Minsk 220030, Belarus

Abstract. Parcels delivering via pick-up points have become very popular due to the fast development of online mar-
ketplaces, customer-to-customer markets, and the use of parcel lockers as the last mile delivery solution. An adequate
modelling of such delivery systems requires the creation of novel queueing models. In this paper, the process of delivering
is described as the processing of a parcel in two service areas. The first area corresponds to processing until the parcel’s
arrival to the second area. The service in the second area corresponds to the storage of the parcel in a warchouse until it
is picked up by a customer. The capacity of the warehouse is finite. A parcel arriving when the warehouse is full is lost.
To enhance the efficiency of the system operation, threshold-type control by parcel admission at the first area is applied.
Such a system is analysed under quite general assumptions about the parcel arrival flow. The analysis is implemented via
consideration of the suitably constructed multidimensional continuous-time Markov chain. The dependence of the main
performance measures of the delivery system on the warechouse capacity and the admission threshold are established and
numerically illustrated. An optimisation problem is formulated and solved.

Keywords: parcel delivery system; pick-up point; tandem queue; admission control; multidimensional Markov chain;
Markov arrival process; optimisation.

Introduction

As it is mentioned in [1], the business of parcel deliveries has been booming in recent years. From 64 bln
parcels sent worldwide in 2016, the number of parcels has climbed up to over 161 bln in 2022 and it is forecast
to reach 225 bln by 2028. Parcel delivery via the use of pick-up points, in particular the use of parcel lockers,
is very popular as the solution for goods delivering by different online marketplaces (Amazon, eBay, Rakuten,
Shopee, AliExpress, Etsy, Walmart, Mercado Libre, Wildberries, Ozon, etc.) and as the last mile delivery solu-
tion in a variety of out-of-home delivery. Therefore, the problem of enhancement of the organisation of this
kind of delivery is intensively discussed in the existing literature (see, for example, [ 1-4]). The respective case
studies can be found in [5-9].

Due to the uncertainty and randomness of the moments of parcel delivery to the pick-up point and the time
until parcel withdrawal by the customer after its delivery to the pick-up point, it is evident that adequate mathe-
matical models of parcel delivery processes can be constructed in terms of the theory of queues. Examples of
application of this theory to this end can be found in [10—12].

In this paper, we propose and investigate the mathematical model of the order (parcels, goods, foods, etc.)
delivering to the pick-up point and its storage there until receiving by the customer. Thus, we suppose that
the lifetime of an arbitrary customer’s order (parcel) in the delivery system consists of two parts, namely:
(1) the time since the order generation in the system until its delivery to the target pick-up point and (ii) the
sojourn time of the order in the warehouse of the target pick-up point until it is received by the customer or
sent back to the sender. Correspondingly, an arbitrary order is sequentially processed in two service areas.
The capacity of the second area, which models the pick-up point, is finite, and the orders arriving when it
is exhausted are lost or returned to the sender. To mitigate the losses at the order entrance to this area, we
propose the order admission control. New orders arriving in the first area are rejected if the total number
of orders processed at two areas has the maximal admissible value (threshold). We explore the possibility of
optimisation of operation of this delivery system via the proper choice of the capacity of the warehouse and
the value of the threshold.

The rest of the text is organised as follows. The model of the order delivery is formulated in the queueing
theory language in section «Mathematical model». The tridimensional Markov chain describing the operation
of the delivery system is introduced, and its generator is derived in section «The Markov chain describing the
system operation and its generator». Formulas for the main performance measures computation are presen-
ted in section «Performance measures computation». Numerical illustrations are given in section «Numerical
examplesy, including examples of potential applications of the obtained results for managerial goals. Finally,
section «Conclusions» concludes the paper.
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Mathematical model

The structure of the system under study is presented in fig. 1.

Area 1 T T(x Area 2
MAP Y K | p
L 1
N

Fig. 1. The queueing system under study

Area 1 accommodates the orders that are in the process of delivery to the pick-up point. Area 2 models the
stay of the order which is ready for picking up in the warehouse of the target pick-up point.
The process of parcel (order) arrival to the system is modelled by the MAP flow defined by the matrices D,

and D, such that the matrix D(1) = D, + D; is the generator of the irreducible Markov chain with a continuous
time v,, ¢ > 0, having a finite state space {1, 2, ..., W} The matrix D, consists of the intensities of transitions of
the chain v,, # > 0, accompanied by the receiving of an order. The non-diagonal elements of the matrix D,

determine the intensity of the corresponding transition of the chain v,, > 0, without the receiving of an order,
and the modules of the negative diagonal elements of the matrix D, determine the intensity of the exit of the
process v, from the corresponding state of the Markov chain v,.

The average order rate A is determined by the formula A = 0D,e where 0 is a row vector of the invariant

probabilities of the Markov chain v,, £ > 0. This vector is the only solution to the system OD(I) =0,0¢ =1. Here

and below, 0 is a row vector of appropriate size consisting of zeros, and e is a column vector of appropriate size
consisting of ones. Formulas for computation of other characteristics of the MAP, for example, the correlation
coefficient of the successive interarrival times, variance, and higher moments of these times distribution, can
be found in [13-18]. Let us also mention recent papers [19-29] devoted to the analysis of queues with the MAP.

Because the capacity of the real-world warehouses is limited, we assume that area 2 cannot accommodate
more than K orders at the same time. Here, K is an arbitrarily fixed integer number. An order arriving when the
area 2 capacity is exhausted, i. e. K orders are stored there, is not admitted to this area and is lost (sent back to
the sender).

Due to this, aiming to reduce the probability of an arbitrary order loss after its service in area 1, it is desi-
rable to apply some kind of order admission control in this area. We suggest that the reasonable control policy
is as follows. A certain threshold N such as N > K is fixed. An order arriving to area 1 is admitted for service if
the total number of orders residing at the arrival moment in area 1 and area 2 is less than N. Otherwise, if this
number is equal to N, the arriving order is rejected (lost at the entrance to area 1).

When the number of orders in the system at the arrival moment does not exceed N — 1, then a new order is
admitted into the system, and the number of orders in area 1 increases by one; otherwise, the arriving order is lost.

The sojourn time of an order in area 1 (delivery time) is the exponentially distributed time with the para-
meter y > 0. After this time expires, the order tries to enter area 2. If there are less than K orders residing in
area 2 (the number of orders in the warehouse), the order arriving from area 1 is admitted for service in area 2.
Otherwise, it is lost.

After the order is admitted to the warehouse, it is stored there the customer picks it up. The storage time of
orders in the warehouse is limited. All customers of the system are divided into two groups. The first group is
irresponsible customers that receive their orders only when the order storage time is almost complete. The second
group is responsible customers who pick up their parcels earlier than the storage time runs out.

To take this into account, we assume that responsible customers pick up their orders after an exponentially
distributed amount of time with the parameter p > 0. The order residence time in area 2 (the storage time of
the order at the warehouse) is limited and it has an exponential distribution with the parameter oo > 0. When this
time finishes, with a probability p, an irresponsible customer picks up her order (the order is considered to be
successfully serviced), and with the complementary probability, the order is lost (returned from the warehouse to
the sender).

It is obvious that the value of the threshold N has a profound effect on the performance of the considered
system. If N is too small, then many arriving orders are not admitted to the system, and, due to the randomness
of the arrival and picking-up processes, the starvation of area 2 can occur. As a consequence, the warechouse
is underutilised, and the throughput of the system is low. If N is too large, there exists a high risk of an order
rejection at the entrance to area 2 due to the lack of the place in the warehouse. Such a rejection again reduces
the throughput of the system and leads to the waste of the system resources spent for the rejected order service
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in area 1. Therefore, the value of the threshold N has to be chosen optimally with respect to some fixed crite-
rion. The main purpose of this paper is to provide an opportunity for computation of the optimal capacity K of
the warehouse storage and the threshold N defining when the admission of new orders has to be temporarily
suspended.

The Markov chain describing
the system operation and its generator

Let the parameters K and N be fixed and let i, be the number of orders in area 1, i, =0, N, k, be the number

of orders in area 2, k, =0, min{N -i, K }, v, be the state of the underlying process of the MAP, v, =1, W, at
time ¢ > 0.

The behaviour of the system under study is described by a regular irreducible Markov chain with a conti-
nuous time

& ={i, k,v,},1=0.

For easier analysis of this Markov chain, let us enumerate the states of the Markov chain in lexicographic
order and call sub-level (i, k) the set of the states (i, k, 1), (i, k, 2), ..., (i, k, W). Level i is the set of sub-levels
(4,0), (i, 1), ..., (i, min{N -4, K}), 0, N.

Theorem 1. The generator Q of the Markov chain &,, t > 0, has the following block tridiagonal structure:

Q.o Qo1 O 0 o .. 0
Qo Q1 G, O (@) 0]
O 0, &, &3 O .. o
0= O o Q3,2 Q3,3 Q3,4 o )
0 0 0 0 O ... Oyv.in
0 0 0 o O ... Oy

where the non-zero blocks O, ;, |

the states of level j are defined as follows:
Q. =1, ,®D, —iY1K+1)W—(H+ )Cy ®Iy + (n+0)CyEg ®1y, i=0,N-K -1, (1)

i— j| <1, containing the intensities of transitions from the states of level i to

Qi =y i1 ®Dy = iVl — (h+a)Cy_ By ®Ly+Iy_ ;@D +

+(n+a)Cy_Ey_,;®I, i=N-K, N, )
Qi,i+1:[K+l®D1’i:m) 3)
0.;=Ey_;®D,i=N-K,N-1, 4)
0., =iE*®I,, i=1, N-K, (5)
O, _1=iyEy_;®1I, i=N-K+1,N. (6)

Here, ® is the Kronecker product of matrices (see, for example, [30]); I is the identity matrix, and O is the zero
matrix, with the dimensionality in a subscript if it is necessary,; o is the Kronecker delta, that is 1

=0 otherwise; C,= diag{O, L2, ..., l}, i. e. C, is the diagonal matrix with the

condition condition —

if condition is true and 3, gion

diagonal entries {0, 1,2, ...,1 } [1=0,K; f, =0, K, is a square matrix of size [ +1 with all zero elements ex-

cept the element (f,) =1, E;, =0, K, is a square matrix of size | + 1 with all zero elements except the ele-
1,1

ments (EI_) =Lk=11-1 E, [=1,K, is a matrix of size (l + 1) x I with all zero elements except the

k,k—1
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elements (Ef )k = L, k=0,1-1; E" is a square matrix of size K + 1 with all zero elements except the elements
(E+) =1, k=0,K-1, and (E+) =1; Ef, [=0, K -1, is a matrix of size (l+ l) X (l + 2) with all zero
ko k+1 K. K
elements except the elements (Ef )k s 1, k= (Tl
, K+

Proof. Proof of theorem 1 is performed via the analysis of all possible transitions of the Markov chain &,
during the time interval of an infinitesimal length. The block tridiagonal form of the generator is explained by
the fact that the arrival and departure of the orders to area 1 occur one by one.

Let us first prove formulas (1) and (2) for the matrices Q, ;. The size of these matrices is defined by the
cardinality of the state space of the two-dimensional process {k,, v, }. The component v, has /¥ possible states.
The state space of the component &, depends on the value of the component i, If the number i, of orders at
area 1 is small, namely, i, =0, N — K — 1, then the component &, admits the values in the range from 0 to K.
Ifi, > N - K —1, then the component &, admits the values in the range from 0 to N —i,. Correspondingly, the size
of the matrices O, , is equal to (K +1)x W if i=0, N—K —landto (N—i+1)xW ifi=N-K, N.

The diagonal entries of these matrices are negative. The modules of these entries define the rates of the exit of
the Markov chain &, from its states. The exit from the state {i, k, v} is possible due to (i) service completion
of one of 7 orders in area 1 (the corresponding rate is iy), (ii) departure of one of k£ orders from area 2 (the cor-
responding rate is k(u + oc)), (111) exit of the underlying process v, from its state (the corresponding rates are

the modules of the diagonal entries of the matrix D).

The non-diagonal entries of the matrices ), ; define the rates of transition of the Markov chain &, to another
state without the change of the value i of the component i.. There are only two variants of such transitions:
(1) transitions of the underlying process v, (rates of which are defined by the non-diagonal entries of the mat-

rix D), (i1) departure of one of k orders from area 2. The rates of the departure are equal to k(u + a), and, as
the consequence of this departure, the number £, of orders at area 2 decreases by one. Transition probabilities
of the component £, from the state & to the state k — 1, k =1, K, are given by the entries of the matrix E.

As the result of these considerations, we obtain formula (1). Formula (2) which is valid for i=N - K, N
is obtained via the same considerations. An additional summand ,,_, ® D, appears here because a new order
arrival (the corresponding rates are given by the entries of the matrix D,) when the number of orders in area 2
is equal to N — i (thus, the total number of orders in the system is equal to N) does not change the state of the
system because this order is not admitted to the system.

The operation of the Kronecker product of matrices is used in (1), (2), and other formulas to describe tran-
sition rates of two independent Markov components { k,, v,} of the Markov chain &,.

Formulas (3), (4) are clear because the increase of the component 7, can occur only when a new order is admit-
ted to area 1 which happens with the rates defined by the entries of the matrix D,. A new order admission to area 1

does not imply any change in the number of orders in area 2. This explains the presence of the Kronecker multi-

plier /., , in formula (3), valid fori =0, N — K — 1. Wheni = N — K, N —1, the increase in the value 7 implies the

reduction of the state space of the component £, of the chain. This reduction is implemented via the Kronecker

multiplication of the matrix D, from the left by the non-square matrix E~;H. This explains formula (4).
Transitions from the level i to the level i — 1 occur with the rate iy when the service of one order at area 1

finishes. If i =0, N — K, this order starts service at area 2, and the number of orders at this area increases by 1.
The matrix £ describes transition probabilities of the component k, of the Markov chain &, at this moment.

Wheni=N — K +1, N, the decrease in the value i implies the extension of the state space of the component £,
of the chain. This extension is reflected by the non-square transition probability matrix E7;_..

As the result of these considerations, we obtain formulas (5) and (6).

Theorem 1 is proven.

Because the Markov chain &, is irreducible and has a finite state space, the stationary probabilities of its
states

n(i, k,v)=limP{i,=i, k,=k,v,=v},i=0, N, k=0, min{N—i, K}, v=1W,
1—0

exist for any set of the system parameters.
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Corresponding to the introduced enumeration of the states of the Markov chain £, let us introduce the row
vectors n(i, k) of the stationary probabilities of the states that belong to the sub-level (i, k) and vectors 7, of the
stationary probabilities of the states that belong to the level i. The vectors &, i = 0, N, satisfy the system of linear

algebraic equations (Chapman — Kolmogorov equations)
(T, Tps ooy Ty )0 =0, (1, Ty, ..., Ty Je=1.

This system is finite. However, in potential real-life applications of the model, the capacity K of the ware-
house can be large, and the number of equations in this system can be large as well. Therefore, to solve this
system it is necessary to use algorithms that effectively account for the block tridiagonal structure of the gene-
rator O and the fact that the solution of the system represents a probability distribution. The numerically stable
algorithms obtained in [31; 32] are recommended for further use.

Performance measures computation

Having an opportunity to compute the vectors &, i =0, N, it is possible to calculate the values of the basic
performance characteristics of the considered queueing model, in particular:
e the mean number of orders residing at an arbitrary moment in area 1

N
L1=Zmie;
i=1

e the mean number of orders residing at an arbitrary moment in area 2
N-— 1m1n N i, K

L,= ,Z‘T Z kn(l', k)e;

e the mean number of orders processed at an arbltrary moment in the system
N min{N-i,K}

LZ[;) kgo (i+k)n(i, k)e=L+ Ly;

e the rate of the output flow of serviced orders is
N- 1m1n N i, K

Z Z k(u+(1—p)a)n(z’, k)e;

e the loss probability of an order at the entrance to the system

N
Pemzl > w(i, N—i)De; (7)
ANk
e the loss probability of an order when moving from area 1 to area 2
loss -2~ z ’YlTE (8)

e the loss probability of an order due to lack of demand by the customer (expiration of the storage time)
N 1rnm N i, K}

Z Z pkan(i, k)e; 9)
o the loss probability of an arbitrary order
P .=P +P +P =1- %

loss — “ent loss, 1—- imp

The latter relation giving two alternative ways for computation of B is useful for verification of the ana-
lytical results and computer implementation of procedures for computing the invariant distribution of the sys-
tem states.

Formula (7) is valid because the loss of an order at the entrance occurs when the order sees N orders pre-
N

senting in the system. The components of the row vector z n(i, N—-i ) define the distribution of states of
i=N-K
. . . 1
the underlying process of arrivals at such an arrival moment. The column of vector — D,e defines the proba-

bilities of an order arrival at an arbitrary moment under the fixed state of the underlying process [17]. Now,
formula (7) evidently follows from the formula of total probability.
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The probability B ;_, is computed as the ratio of the rate of the lost orders during their transfer from area 1
to area 2 to the arrival rate which is equal to A. The rate of customers transfer from area 1 is proportional to the
number of orders at this area. The loss of the customers, which transfer to area 2, can occur only if the number
of orders at area 1 is less or equal to N — K while the number of orders at area 2 is equal to K. Therefore, the

N-K
rate of the lost orders is Z yin(i, K )e. Formula (8) is proven.

i=1
The probability £, is also computed as the ratio of the rate of the customers which are lost due to ex-
piration of the storage time to the arrival rate A. Under the fixed numbers (i, k) of orders at areas 1 and 2, the
rate of the loss is equal to pka.. By implementing summation of the products of these rates by the probabilities

n(i, k)e over the values of (i, k) under which the corresponding loss can happen we obtain formula (9).

Numerical examples

The aims of this section are to demonstrate the feasibility of the proposed algorithms for computation of
the basic performance characteristics of the system, graphical illustration of their dependencies on the para-
meters K and N, and to show the possibility to use the obtained result for managerial purposes.

Let the MAP flow of orders be determined by the matrices

D < di { g 2} D 7.5 0.5
=diag{-8, -2}, D, = .
o= e o1 19
This MAP has the mean arrival rate A equal to 3, the coefficients of correlation and variation of the succes-
sive interarrival times are ¢, = 0.17 and ¢, = 1.625 respectively.

The parameters of the exponential distributions of the service time of an order in area 1 (y), the time till an
order pick-up by the responsible customer (i), and the storage time of an order at area 2 (o) are chosen as fol-
lows: y=10.03, n=0.02, o = 0.004. The probability p that an irresponsible customer picks up her order when
the storage time expires is assumed to be equal to 0.03.

We vary the parameter N in the interval [50, 500] with step 50 and the parameter K in the interval [25, N ]
with step 25.

The dependence of the average numbers L, and L, of orders at areas 1 and 2 on the parameters N and X is
presented in fig. 2 and 3.
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N 500 0

Fig. 2. The dependence of L, on the parameters N and K
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Fig. 3. The dependence of L, on the parameters N and K
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One can see from these figures that the numbers of orders at both areas grow with the increase in the system
capacity . The number of orders in area 1 decreases, and the number of orders in area 2 increases with the in-
crease in the parameter K. This can be explained as follows. The increase in K means that the capacity of area 2
increases, and more orders can be stored in this area which leads to the increase in L,. At the same time, under
the fixed value of NV, the increase in the number of orders in area 2 leads to a shortness of capacity of area 1,
and more arriving orders are rejected upon arrival. Thus, L, decreases with the growth in K.

The dependence of the loss probability P, , of an order upon arrival on the parameters N and K is presented
in fig. 4.

nt

A 08

N 500 0

Fig. 4. The dependence of P, on the parameters N and K

nt

This probability increases with an increase in K and decreases with an growth in N. The reason for this is
explained in the same way as for L. Note that in the considered example for N = 500 the value of P, , is less
than 2.6 - 10~ for all values of K.

The dependence of the probability Ay ;-
parameters N and K is presented in fig. 5.
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Fig. 5. The dependence of B ,_, on the parameters N and K

oss, 1

The loss probability A , increases with the growth in the parameter N because an increase in N leads

to an increase in the number of orders in area 1, and more orders arrive at area 2. Thus, when the capacity of
the buffer K is not large, more orders are rejected due to the impossibility of placing them in area 2. When the
capacity K increases, the loss probability A | , evidently decreases. In the considered example, for K > 275,
the loss probability A ; , becomes negligible (less than 10719,

The dependence of the probability £, of an order loss due to the storage time expiration in area 2 on the
parameters N and K is presented in fig. 6. This probability increases with the increase in N and K because this
probability is strongly related to the number of orders L, in area 2. Note that in the considered example, for
large values of N and K, the loss probability 7, takes the fixed value. This value shows us that in this example,
regardless of how large capacities NV and K are chosen, 0.5 % of orders are not picked up. When N and K are
not large, this probability is less than 0.005 because the orders that won’t be picked up can be lost for other
reasons (upon arrival or during the transfer between the areas).

The dependence of the total probability B of an order loss on the parameters N and K is presented in fig. 7.
The loss probability A, decreases with the growth in N and K since the increase in buffer capacities creates
better conditions for orders, and fewer of them are lost.
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Having highlighted the dependencies of performance measures of the system on the parameters N and K,
it is possible to formulate an optimisation problem. Let us assume that the cost criterion, which evaluates the
quality of the system operation, has the following form:

E= E(N’ K) = a}\‘out - cl}\‘Pent - cz?\'PIOSS, -2~ 637\’Pimp - dk.

Here, a is the system’s revenue for each order service; ¢, is the penalty for an order loss upon arrival; ¢, is
the penalty for an order loss due to the overflow of area 2; c; is the penalty for an order loss due to sending it
back; d is the charge that is paid for maintenance of one place in area 2 per unit of time. Thus, the criterion £
defines the average revenue of the system per unit time.

In this example, let us fix the following values of the cost coefficients:

a=2,¢,=1,¢,=10,¢c,=0.5,d=0.01.
The dependence of the criterion E on the parameters N and K is presented in fig. 8.
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Fig. 8. The dependence of the cost criterion £
on the parameters N and K

Some additional information about the results of computation of the values of the cost criterion is presented
in table.
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The results of computation of values of the cost criterion
(values of criterion E (N, K) for different values of K,

optimal value N*(K) of N for the given value of K,
and values of the cost criterion E(N, K) for N =K and N = 500)

K N'(K) E(N'(K), K) E(K,K) E(500, K)
25 50 ~1.5247 — ~23.1304
50 50 34191 34191 -16.3107
75 75 0.1732 0.1732 -9.6164
100 150 1.6009 ~0.0707 -3.3341
150 250 4.0153 1.3108 3.8594
200 400 3.9609 24601 3.9609
250 500 3.4625 3.0524 3.9609

Note. For K > 250, the optimal values of N*(K) are greater than 500.

Based on fig. 8 and table, we can conclude that the values of the criterion £ strongly depend on the para-
meters N and K. For small values of K, due to the high probability of order rejection, the system’s revenue is
negative, i. e. the system suffers losses. The value of the losses depends on the parameter N. A greater value of N
implies greater losses for example: £ =—3.626 798 for N = 50, E =—15.159633 for N =100, and £ =-23.13035
for N > 250.

When the parameter K of area 2 increases, the probabilities of order rejection decrease, and the throughput
of the system increases, which implies the increase of the system revenue. If K = 50, then £ =—-1.524 699 for
N=50, E=-3.419056 for N=100, £ =-12.891237 for N=150, £ =-16.17527 for N=200 and £ =-16.13
for N > 250. However, starting from a certain value of K, the cost criterion stops the increase with the growth of
K (due to the high payment for maintenance of the warehouse of a large capacity) and further decreases with

the growth of K. The optimal value of the cost criterion £ (N, K ) in this example is equal to 4.165264 and is
achieved when K =175 and N = 350.

Conclusions

In this paper, the process of a customer’s order delivery to the pick-up point and its stay there is described
in terms of queueing theory. Each order has to be sequentially processed in two areas. Area 2 models the order
maintenance in a warehouse of finite capacity before being picked up by the customer. To avoid overflow of
the warehouse and sending the order back to the sender, order admission control in area 1 is proposed. This is the
threshold type control. The arrival of orders to the system is described by a quite general Markov arrival process,
which allows us to fit not only the mean arrival rate, as the stationary Poisson process does, but also the variance
of interarrival times and their correlation in real-world systems. The existence of two types of customers, re-
sponsible and irresponsible, characterised by different distribution of time until an order withdrawal in pick-up
point is taken into account.

Under the fixed values K of the capacity of the warehouse and admission control threshold N, the perfor-
mance of the order delivering system is evaluated via the analysis of a suitably constructed multidimensional
Markov chain. The possibility of computation of the values of various performance measures and the solution
of optimisation problems is numerically illustrated.

The obtained results can be extended to the delivery system with the batch arrival of orders and their group
picking up. Retrials of the customers that failed to make the order due to the system overflow can be considered
as well. The results can be used for solving more global problem of routing the flows of parcel in a network
between the alternative neighbouring pick-up points aiming to optimally match the rates of flows to the capa-
cities of the warehouses at different pick-up points and their throughput.
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