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Abstract. For a Baer-local (composition) Fitting formation § of finite groups the algorithm for the computation of the
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one can compute the §-radical in case when § is a primitive saturated formation of soluble finite groups. The algorithms
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Introduction and the main result

All groups considered here are finite. Fitting showed that the product of two normal nilpotent subgroups
is again nilpotent, i. e. in every group there exists the greatest normal nilpotent subgroup which is called the
Fitting subgroup. Recall that a class of groups is a collection X of groups with the property that if G € X and if
H=G,then H € X. A group G € X is called an X-group. The greatest normal X-subgroup of a group G is called
the X-radical and is denoted by G,. It always exists in case when X is a Fitting class. From the fundamental
result of R. A. Bryce and J. Cossey [1] it follows that the hereditary non-empty Fitting class of soluble groups
is a primitive local (saturated) formation. The similar result for the quotient group closed Fitting classes of
metanilpotent groups was obtained in [2].

The computational theory of formations, Fitting and Schunk classes was discussed in [3—5]. The algorithm
for computing the X-radical (of a soluble group) was presented only in [3]. Note that as was mentioned in [3]
the suggested there algorithm (even when X is the class of all nilpotent groups) for a permutation group of
degree 3n may require to check for nilpotency 2" subgroups. The main idea of that algorithm was to extend
the X-radical from the given member of chief series to the next one. It was written in [3, p. 507]: «Note that
for many Fitting classes §, more efficient algorithms for §-radicals can be obtained from the theoretical know-
ledge about §». Nevertheless, the methods how one can obtain such algorithms were not presented. The aim of
this paper is to suggest an algorithm for the computation of the §-radical (which runs in polynomial time for
permutation groups) for a Baer-local (composition) formation §.

Recall that the Fitting subgroup F(G ), the p-nilpotent radical O, ,(G), the soluble radical R(G ) of a group G
are just the intersection of centralisers of all chief factors, all divisible by p chief factors and all non-abelian
chief factors respectively. Recall that for a chief factor H/K of G the subgroup HC (H /K ) is called the inneriser
of H/K. By its definition the generalised Fitting subgroup (the quasinilpotent radical) F*(G) is the intersection of

innerisers of all chief factors of G. The first three radicals are associated with local Fitting formations and the
last one is associated with a Baer-local Fitting formation.

Note that L. A. Shemetkov [6] obtained similar characterisations of the §-radical for a Baer-local Fitting for-
mation § using the generalisation of the centraliser of a chief factor. We cannot use the results from [6] directly

for three reasons. Formations § in [6] are defined with the integrated Baer-local function, i. e. f (H /K ) c § forall
chief factors H/K. In some applications (such as primitive saturated formations) the functions will not necessarily
satisfy this condition. The characterisation of Gy is obtained only in case f (H /K ) # (I for all chief factors H/K
of G. Also the constructive description of the generalised centraliser was not presented in [6].

Let f be a function which assigns to every simple group J a possibly empty formation f (J ) Now extend
the domain of f. If G is the direct product of simple groups isomorphic to .J, then we say that G has type J
and let f(G)=f(J). If Jis a cyclic group of order p, then let f(p)= f(J). Such functions / are called Baer
functions. A formation § is called Baer-local [7, chap. IV, definitions 4.9] (or composition (see [6] or [8, p. 4]))
if for some Baer function f

§=(G|G/C4(HIK ) e f(HIK) for every chief factor H/K of G).

Such a formation § is denoted by BLF' ( f ) The main result of this paper is the following theorem.
Theorem 1. Let § be a Baer-local Fitting formation defined by f such that f (J ) is a Fitting formation for
any simple group J. Assume that (G/K ) () can be computed in polynomial time in n for every permutation

group G of degree n, its normal subgroup K and a simple group J. Then (G/K )S can be computed in polyno-
mial time in n for every permutation group G of degree n and its normal subgroup K.
Note that if /(J)=¢, then G /() is not defined for any group G. A Baer-local formation defined by the Baer

function f'is called local if f(J)= m( : f(p) for every simple group .J.
pen(J
Corollary. Let § be a local Fitting formation defined by f such that f ( p) is a Fitting formation for all
prime p. Assume that (G/K ) () €aN be computed in polynomial time in n for every permutation group G of

degree n, its normal subgroup K and prime p. Then (G/K )3 can be computed in polynomial time in n for every
permutation group G of degree n and its normal subgroup K.

Preliminaries

Recall that a formation is a class of groups § that is closed under taking epimorphic images (i. e. from G € §
and NG it follows that G/N € §) and subdirect products (i. e. from G/N, € § and G/N, € § it follows that
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G/ (Nl NN, ) € ). A class of groups § is called a Fitting class if it is normally hereditary (i. e. from NI G e §

it follows that N e §) and N-closed (i. e. from N;, N, <G and N,, N, € § it follows that N|N, € §). If § is
a Fitting class and a formation, then § is called the Fitting formation.

For a class of groups X recall that £X denotes the class of groups with a normal series whose factors are
X-groups. If § is a Fitting formation, then EF is also a Fitting formation and is closed by extensions. Here
OZ(G) denotes the greatest normal subgroup of G all whose composition factors belong to X for a class of
simple groups X.

Recall that S, denotes the symmetric group of degree n. We use standard computational conventions of ab-
stract finite groups equipped with polynomial-time procedures to compute products and inverses of elements

[9, chap. 2]. For both input and output, groups are specified by generators. We will consider only G = <S > <SS,

with |S | < n’ Ifit is necessary, Sims algorithm [16, parts 4.1 and 4.2] can be used to arrange that |S | <n*. Quo-

tient groups are specified by generators of a group and its normal subgroup. Note [10] that there exists a per-
mutation group of degree n such that it has a quotient with no faithful representations of degree less than 2"*.

For the rest of the paper 7 is used to denote the degree of the input permutations. A polynomial-time algo-
rithm is an algorithm whose running time is upper-bounded by some polynomial function of n.

We need the following well known basic tools in our proofs (see, for example, [9] or [11]). Note that (1)—(4)
are obtained with the help of the classification of finite simple groups.

Theorem 2. Given normal subgroups A and B of a permutation group G of degree n with A < B, in polyno-
mial time one can solve the following problems:

(1) Find the centraliser CG/A(B/A) of B/Ain G/A [11, P6(i)].

(2) Find a chief series for G containing A and B [11, P11].

(3) Test if G/A is simple [9, P10(i)]; if it is not, find a proper normal subgroup N/A of G/A [9, P10(ii)]; if it is,
find the name of G/A [11, P12]. In particular, find a type of a chief factor.

(4) Find OZ(G/A) for a class X of simple groups [11, P16(i)].

(5) Given HL G, find H N A [11, P4(i)].

(6) Find the derived subgroup (G/A)' of G/A [11, P10(ii)].

(7) Find the order |G/A| of G/A [11, Pl].

The following lemma restricts the length of a chief series of a permutation group.

Lemma 1 [12]. [f G < S,, then the length of every subgroup chain in G is at the most 2n — 3 for n > 2.

Proof of theorem 1

In this section § is a Baer-local Fitting formation defined by f'such that f (J ) is a Fitting formation for any

simple group J. The idea of the theorem proof is to obtain the §-radical as the intersection of generalised cent-
ralisers of chief factors in the sense of the following definition.

Definition 1. For a chief factor H/K of G with f(H/K)# @ let C; (H/K) be defined by (a) C;(H/K) <

< Co, r(HIK) and (b) Cg, ;(HIK)/C(HIK)=(G/CG(HIK)) 0

Lemma 2. Let B/A be a chief factor of a group G with f(B/A) # I and N be a normal subgroup of G with
N<A. Then
Con.;((BIN)/(4IN))=Cg, (BIA)IN.

Proof. Note that
Cow((BIN)/(AIN))={gNe G/N|[gN, gN]e AN for all g;Ne BIN} =
={g<€G|[g g ]N e 4/N forall g,e B}/N=C,(B/A)/N.

Now
(GIN)/Cgn((BIN)/(4IN))=(GIN)/(Cy(BIA)IN)=G/Cy;(BIA).

This isomorphism induces the isomorphism between (B/A)-radicals of the left and the right hands parts.

It means that if F/C;(B/A)= (G/CG(B/A))f(B/A)’ then

(FIN)/(C4(BIA)IN)=(FIN)/Cqn((BIN)/(4IN))=((GIN)/Cgy ((B/N)/(A/N)))f(B/A).
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Thus Cg)y, f((B/N)/(A/N)) Ce. f(B/A)/N The proof is completed.

Lemma 3. Let H/K be a chief factor of a group G with f(H/K) # . Then Gz < Cg, f(H/K).

Proof. If H/K¢F, then from GSK/Ke § it follows that H/K N GSK/Kz K/K. Therefore HGy /K =
=(H/K)x Gy K/K. It means that Gy < C; (H/K )< Cy; (H/K).

Assume that H/Ke§ and p e n( H/K). Since § is Ny-closed, we see that T/K = HG;/K € §. For a sub-

group L of G with K < L denote L/K by L. Now T/Cf(]V[/ZV) € f(A_l/ZV) f( /K ) for every chief factor M/N
of T below H. L L

If H/K is abelian, then H/K is a p-group for some prime p. Let K = H,<H, < ... <JH, = H be a part of
chief series of T. Then T/Cy(H,/H, ,)e f(p)=f(HIK). Let C= {"w C—(ﬁ /H _1)- Now C/Cz(H) is
a p-group by [7, chap. A, corollary 12.4(a)]. Since f ( p) is a formation, 7 ( ) (C /IK)e f ( ) Thus

T/IK)/Cr i (HIK)eN  f(p). Note that
T/K p
(T/K)/Crx (HIK)=(T/K)Cgx (H/K)/Cgs, (HIK)<L(GIK)/Cgx (H/K).

Since H/K is a chief factor of G/K, we see that O, ((G/K)/CG/K (H/K)) =1by [7, chap. A, lemma 13.6]. Hence
0,((T/K)Cgx (HIK)/Cg i (H/K))=1. Thus
(T/K)/Cr (HIK) = (T/K)Coyx (HIK)/Cqic (HIK) € f(p) = f(HIK).

If H/K is non-abelian, then H /K is the direct product of minimal normal subgroups H,/K of /Kby [7, chap. A,
lemma 4.14]. Since f( p) s a formation, from Cr,  (H/K )= r[\CT,K (H,/K) it follows that (T/K )/Cy,x (H/K ) €
e f(H/K). Since f(H/K)is a Fitting formation, we see that

(T/K)/Cpx (HIK)=(T/K)/(Cy (HIK)/IK)=T/Cy (HIK)=

=TC4(HIK)/ICo(HIK)=(G/Cq (H/K))/‘(H/K) =Cq. [(HIK)ICG(HIK).

Therefore Gy <T < Cg;, ;(H/K). The proof is completed.
Theorem 3. Let 1=G, <G, <... < G,, =G be a chief series of a group G. Then

m

Gg: ﬂ CG,f(Gi/Gi—l)
i=1,/(G/G_,) @ 5

Proof. We assume that every intersection of empty collection of subgroups of G coincides with G. Let

D= ﬁ Ce, /(GG )
i=1,/(G/G,_)#@
From lemma 3 it follows that GE < D. Note that GE € E§. Thus GS SDps. Letl1=Dy< Dy <... 94D, =Dy
be a part of chief series of G below Dj. Then by the Jordan — Holder theorem there is p:{1, ..., I} — {1, s m}
such that D,/D, _, is G-isomorphic to Goi /Gp(l.)_1 forallie{l, ..., I}. Now CG( /Gp() 1) D, /D, 1

11—

forallie{l, ..., /}. Hence Cy, (Gyy/Gyy 1) = Co, ,(D,/D;-, ) by defimition 1. Note that
Dy5/Cp,, (DD, 1) = Dy Co(DID, 1 )/Co (DD, -1 ) = DisCo( Gy Gy 1 )/Co Gy /Gy 1) <
< a1 (o /Got-1)/Co( G/ Goty-1) 2/ (G Gy -1 ) = /(4D

Since f(Di ID; _ 1) is normally hereditary we see that Dy /CDEE (Di /Di_l)e f(Di /Di_l). Since f(D,. /D,._l) is
closed under taking quotients, we see that

Dys/Cp, (HIK)e f(D,/D;_,)= f(HIK)
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for all chief factors H/K of Dy between D, , and D, for all i e {1, ) } From the Jordan — Holder theorem
it follows that Dy /Cp, (H/K) € f(H/K) for all chief factors H /K of Dyg. Therefore Dy € . Thus Dy = Gy

The proof is completed.

Lemma 4. Let B/A be a chief factor of G. Then Cg, f(B/A) can be computed in polynomial time (in the
assumptions of theorem 1).

Proof. Notethat 7/4=Cg;,, (B/A) can be computed in polynomial time by theorem 2(1) and 7' = C, (B/A).

Now G/Cg(B/A)=G/T. By our assumption (G/T),
completed.

Lemma 5. A chief factor H/K of a group G belongs to § iﬁ‘(H/K)}(H/K) = (H/K)

Proof. Let H/K be a non-abelian chief factor of G of type J. We claim that H/K € § iff (H/K)f(J) =H/K.
Note that H/K is a direct product of groups isomorphic to J. If (H /K ) = H/K, thensince f (J ) is normally here-
ditary, J € f (J ) Now J € § by the definition of the Baer-local formation. Since § is N,-closed, H /K € §. Assume
now that H/K e §. Hence J € §. Since J is non-abelian, J = J/CG(J) IS f(J) Therefore H/K = (H/K)f
a direct product of f (J )—groups.

Let H/K be an abelian chief factor. We claim that H/K e § iff f (H /K ) # . It is clear that if H/K € §,
then f(H/K)#= . Assume that f(H/K)# Q. Hence 1€ f(H/K). Now (H/K)/Cy x(U/V)=1e f(H/K)=
=f (U / V) for any chief factor U/V of H/K. Thus H/K € § by the definition of the Baer-local formation.

Note that the two above mentioned cases are equivalent to H/K € § iff

(HIK) = (HIK)

(HIK) ™

(814) A1 be computed in polynomial time. The proof is

!

) as

The proof is completed.
Lemma 6. In the assumptions of theorem 1 we can compute (G/K ) £z polynomial time.

Proof. If H/K is a chief factor of G, then we can check if H/K € § in polynomial time by our assumptions,
lemma 5 and theorem 2(6).
We can compute a part of the chief series K=G, <G, <... 4G, =G of a group G in polynomial time by

theorem 2(2). Define F; by F;/K = (Gi/K)Eg‘ Note that F; NG, _,=F,_, and F, = K. Now
F/F, _, :F;'/(F;' mGz’—l)zFiGi—l/Gi—l <G/G;_y.

Therefore F;/F;_, is isomorphic to either 1 or G,/G;_,. If G,/G; _, ¢ §, then F; = F;_,. Assume that G,/G,_, € §.
If G,/G,_, is a group of type J, then F;/F;_, is also such a group. Since EF is closed under extensions, we
see that F,/F,_,= O( J)(G,- /Fi-1)- Hence F, can be computed in polynomial time by statements (3) and (4) of
theorem 2.

Algorithm 1. EFRADICAL (G, K, §).

Result. (G/K) ...

Data. A normal subgroup K of a group G, §=BLF ( f).
Compute a chief series K=G, <G, 4... 4G, =G;

F <K,
forie{l,..., m} do
if(Gi/Gil);(Gi/Gi_]) =(G/G._,) then
J «type of G,/G,_;
FI/F<—O(J)(G,-/F);
F<« F;
return F/K.

Proof of theorem1.Let K=G, <G, <... <G, =G be a part of chief series of G (it can be computed
in polynomial time by theorem 2(2)). Now by lemma 2

1K = N Cor. 1((G/K) (G- /K)) = N Ce,(G/G ).
i:l,f((G,./K)/(G,.,l/K));t@ i=1.7(G/G,_\) %@
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Hence this subgroup can be computed in a polynomial time by theorem 2(5) and lemma 4. Using lemma 6 we
can compute R/K = (I/K)ES' Now (G/K)s = (I/K)E% by theorem 3.

Algorithm 2. FRADICAL(G, K, S)
Result. (G/K)...
Data. A normal subgroup K of a group G, § = BLF( f).
Compute a chief series K=G, <G, 4... 4G, =G of G;
T« G;
forie{l, ..., m}do
if £(G,/G;_,)# @ then

CIG, < Cg (G/G,,);

FIC(GIC) g6,

T/K < T/K NFIK;
return EFRADICAL (T, K, §).

Applications
The F-radical for a primitive saturated formation. Let %, denote the family consisting of the empty
set, the formation of groups of order one, and the formation of all soluble groups, and then, for i > 0, define 7,
inductively by §e Z, if either §€.% _, or § is a local formation, with local definition f such that f ( ) S
for all prime p. Finally let & be the family comprising all formations § such that §= u& with each § e u I,
and §;  §; , . Formations from Fare called primitive [7, chap. VII, definition 3.1]. As was mentioned in [ 3]
fGeFes and the nilpotent length of G is less than m, then there exists $ € %, with G € $.

Theorem 4. Let m be a natural number. If §e &, and KI1G<S,, then (G/K )3 can be computed in poly-
nomial time (in n).
Proof. It is clear that if $ € %, then (G/K ) can be computed in polynomial time by theorem 2(4). As-

sume that we can compute (G/K ) in polynomlal time for every $e Z,_,. Let prove that we can do so for
every € 7. If He F\F,_ |, then the values f(p) of local definition fof §) are in Z_,. By our assumption we
can compute the f ( )—rad1cals of G/K in polynomial time for every K <G < §,. Hence we can compute the

$)-radical of G/K in polynomial time in n for every K <G < §, and every $) € %, by theorem 1. Thus (G/K ) can
be computed in polynomial time for every K IG<S,.

The F-length. The lengths of a group associated with some of its radical (the nilpotent length, the p-length
and etc.) play an important role in the theory of groups. Some approaches how one could introduce the §-length were
suggested in [14, paragraph 5; 15]. Using the ideas of those approaches we introduce the following definition.

Definition 2. For Fitting classes § and §) the §, $-length /; .(G) of a group G is equal to m if 1= G, <
4G, <...4G,, .,=G where G,/G, _, =(G/G,._1)ﬁ for odd i and G;/G,_, =(G/G,._1)S #1 for even i. Note that
the §, H-length is defined only in case G E(S U 5’)).

Remark 1. In some cases of this definition § N $=¢& is the class of all identity groups. If §)=¢& then the
. H-length is just the F-length and it will be denoted by /(G ) for a group G.

Remark 2. If §=11s the class of all nilpotent groups, then lm(G) = h(G) is the nilpotent length of G and
defined only for soluble groups G. If § =&, is the class of all p-groups and =&, is the class of all p'-groups,
thenly o, (G)=1,(G) is the p-length of G and defined only for p-soluble groups G.

Recall that E. 1. Khukhro and P. Shumyatsky suggested the interesting generalisations of these lengths.

Definition 3 [16; 17]. (1) The generalised Fitting height h*(G) of a group G is the least number /4 such
that F(*h)(G) =G where F(*O)(G) =1, and F(*;.H)(G) is the inverse image of the generalised Fitting subgroup
F'(G/E;(0)).

(2) Letpbe aprime, 1=G, <G, <...< Gy, ,, =G be the shortest normal series in which for 7 odd the fac-
tor G, ,,/G; is p-soluble (possibly trivial), and for i even the factor G, , ,/G; is a (non-empty) direct product of
non-abelian simple groups. Then # =X p( ) is called the non-p-soluble length of a group G.

3) kz(G) = k(G) is the non-soluble length of a group G.
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Remark 3. If §=N"is the class of all quasinilpotent groups, then [ (G) = h*(G). If =67 is the class of
all p-soluble groups, then from [18, lemma 2.7] it follows that /.. , (G)=2,(G).

Note that for Fitting classes § and $) the class R =H 0 §= (G |G/G53 € %) is also a Fitting class and G /G, =
= (G/G36 )E by [7, chap. IX, theorem 1.12]. Hence the §, $-length can be defined by £ in the following way: if
Gy=Gy,#G, then I; o (G)=0, else if Ge H, then I; (G) =0, otherwise I (G)=1; o(G/Gg) +1.

Theorem 5. Let § and §) be Fitting classes. Assume that (G/K ) 5 and (G/K ) 5 can be computed in polynomial
time for any K JG <SS, . Then I ﬁ(G/K) can be computed in polynomial time for any K IG<S,.

Proof. From the statement of the theorem it follows that (G/K ) « =R/K can be computed in polynomial time
forany K 4G <S, by Ry/K=(G/K), and R/R,= (G/RO )3 Now from theorem 2 we can compute ;. (G/K)
in polynomial time by NAIVEFLENGTH.

Algorithm 3. NAIVEFLENGTH(G, K, §, 9).
Result. I . (G/K).
Data. A normal subgroup K of a group G.

if|(G/K) | =|(G/K), | #|G/K] then return co;

if |G/K|= ‘(G/K)f)‘ then return 0;
else
RIK «(GIK),;

return NAIVEFLENGTH (G, R, §, ) +1.

We use R, (G ) to denote the p-soluble radical of a group G. Let F, (G) be the inverse image of F* (G/R , (G))

Lemma 7. For any K <G < S, one can compute F(G/K), 0O G/K), F*(G/K) and F;(G/K) in polyno-

mial time.
Proof. Recall that the generalised Fitting subgroup of a group is its 91" -radical. This class is a Baer-local

formation defined by & where h(J)=1if J is abelian and h(J )= D,(J) otherwise [7, chap. IX, lemma 2.6].

Hence C,, ,(H/K)=Cy;(H/K)=HCy;(H/K) if H/K is abelian. Note that if H/K is non-abelian (of type J), then
G/Cg (H /K ) has the unique minimal normal subgroup which is isomorphic to //K and hence coincides with the
h(J)-radical of G/C;(H/K). Thus Cg; ,(H/K)=HCg;(H/K) in this case. From Cg;(H/K)/K =Cg, (H/K)
it follows that C (H /K ) can be computed in polynomial time by theorem 2(1). Now the generating set of
HC;(H/K) is the joining of generating sets of H and C;( H/K ). Thus HC;(H/K ) can be computed in poly-
nomial time. Hence from the proof of theorem 1 it follows that F* (G/K ) can be computed in polynomial time.
Note that R, (G/K ) can be computed in polynomial time by theorem 2(4). Therefore we can compute 1_7; (G/K )
in polynomial time.

Recall that the classes of all nilpotent and p-nilpotent groups can be locally defined by £, and f,, respectively
where f, (q) =1for all prime g and f, ( p) =1forall prime g # p and f, (q) =6, where & is the class of all groups.
Hence F(G/K ) and O, , (G/K ) can be computed in polynomial time by theorem 1. The proof is completed.

From theorems 2 and 5, and lemma 7 the following result directly follows.

Theorem 6. If K A G < S, and p is a prime, then h(G/K), ZP(G/K), h*(G/K), XP(G/K), l(G/K) can be

computed in a polynomial time.
The main problem of NAIVEFLENGTH is that we need to recompute the K-radicals in quotient groups.

Note that if R is a Baer-local formation and we know C; , (H/K) for every chief factor H/K from some chief

series of G, then we can compute the K-radical in every quotient group of G.
Theorem 7. Let ) and § be Fitting classes such that R=$ 0 § is a Baer-local Fitting formation defined by f

where f (J ) is a Fitting formation for every simple group J. Assume that for any K <G < §, one in polynomial
time can check if G/K € $) and compute (G/K ) ) Jor every simple group J. Then I & (G/K ) can be computed
in polynomial time for any K IG<S,.

Proof. Let K =G, <G, 4... 4G, =G be a part of chief series of G. Then G/K € ER iff G,/G,;_, € & for

every i iff(Gi /G );(GV/G,

p',p(

) = (Gi /1G;_, )’ for every i by lemma 5. Note that if G/K € ER, then every its normal
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subgroup also belongs to £R. Hence we don’t need to use EFRADICAL in the computation of the K-radical in
every quotient group of G.

IfK<FLG<S,,then G,F/G, |F = Gl./(Gi N G,._IF) = Gl./(G,._l(Gi mF)) is G-isomorphic to either 1 or
G,/G;_,. Hence F=KF=G,F 1GF d...4G, F=G after we remove the repetitive terms will become the
part of chief series of G above F. Note that C; f(M IN)=Cg, p (L/T) for any G-isomorphic chief factors M /N

and L/T of G. So if we know C;, (Gl. 1G;_, ) and FG,;/FG,_, #1 (it can be checked by theorem 2), then we know
Ce, s (F G,/FG,_, ) Now we can compute (G/F)  using lemma 2 and theorem 3. By the statement of theorem we
can check if (G/F)R €N, i.e. (G/F)ﬁ /(G/F)ﬁ =1. Therefore /5 (G/K) can be computed in polynomial time
forany KIG<S,.

Algorithm 4. FLENGTH (G, K, §, 9).

Result. /2 (G/K).

Data. A normal subgroup K of a group G.

Compute a chief series K =G, 1G, <... <G, =G of G;
if G/K € $) then

return 0;
else

[ «1;
L[], T« G;

forie{l,..., m} do

if(Gi/Gl‘—l);"(GI./G,-,I

CIG,  «Cg (G/G,,);
FIC «(G/C),

)=(G,./G,.,l)' then

G/G,.,l);
add(L. (G, . G,. F))

TIK<«T/IKNF/K,
else
return oo;
if T/K € ) then
return oo;
while G/T ¢ $ do
[« 1+1;
F<« G;
for Re L do
if TR[1] =TR[2] then

remove (L, R);
else
F« FNR[3];
if F/T € $ then
return oo;
T« F;
return /.

Conclusions

This work belongs to a series of works [5; 19] dedicated to the computational recognition of formations
and the computation of associated with them subgroups in every group. The key object of those works was
the notion of a chief factor function. Recall [5] that a function f that associates 0 or 1 with every chief factor

H/K of a group G is called a chief factor function if f (H /K, G) =f (M /N, G) whenever H/K and M /N are
G-isomorphic chief factors of G, and f (H /K, G) = f((H/N)/(K/N), G/N) for every N < G with N < K. With

every such function one can associate the formation C(f) of groups G such that G =1or f (H/K, G)=1for every
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chief factor H/K of the group G. The family of such formations includes all Baer-local formations. In [5; 19]

the algorithms for the computation of the §-residual and the §-hypercenter where § = C(f ) were suggested
respectively. Therefore the following questions seem interesting.
Question 1. Find conditions (*) (or prove that such conditions do not exist) on a chief factor functions f such

that C (f ) is a Fitting formation if f satisfies (*) and for each Fitting formation of the form C (f ) there is a chief
factor function f; which satisfies (*) and C(f)=C(f;).
Question 2. If f is a chief factor function, conditions (*) from question 1 exist and f (H /K, G) can be

computed in polynomial time for every chief factor H/K of a group G < S,, then can one compute (G/K )
polynomial time for every K IG <§,?

The algorithms constructed in the paper are purely theoretical. They are based on known algorithms about
permutation groups (see theorem 2). Not all of these algorithms were fully implemented in computer algebra
systems. That is why the question of implementation of the constructed algorithms remains open.

In [20] Fitting formations were used in the study of sublattices of the lattice of all subgroups. The results of
this paper can be used to compute the sublattices described in [20]. One of the modern directions in the theory
of formations is the study of c-local and Baer o-local formations [21; 22]. These formations are defined with
the help of the generalisations of p-nilpotent radical. The results of this paper can be used to compute those
radicals and hence to check if a given group belongs to such a formation.

o(r) n
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