MID

Учреждение образования «Международный государственный экологический институт имени А.Д. Сахарова» Белорусского государственного университета

УТВЕРЖДАЮ

Директор

МГЭЙим. А.Д. Сахарова БГУ

О. И. Родькин

2024

Регистрационный № УД-1532-24 /уч.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Учебная программа учреждения образования по учебной дисциплине для специальности:

6-05-0533-03 Медицинская физика

Учебная программа составлена на основе образовательного стандарта ОСВО 6-05-0533-03-2023 от 01.09.2023 и учебного плана учреждения образования для специальности 6-05-0533-03 Медицинская физика Рег.№158-23/уч. от 07.04.2023

СОСТАВИТЕЛИ:

Л.А. Хвощинская, доцент кафедры общей и медицинской физики учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент;

Д.И. Радюк, старший преподаватель кафедры общей и медицинской физики учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета

РЕЦЕНЗЕНТЫ:

Кафедра физико-математических дисциплин Института информационных технологий Белорусского государственного университета информатики и радиоэлектроники;

В.А. Иванюкович, доцент кафедры информационных технологий в экологии и медицине учреждения образования «Международный государственный экологический институт им. А. Д. Сахарова» Белорусского государственного университета, кандидат физико-математических наук, доцент

РЕКОМЕНД	OBAH.	AK	ТВЕРЖДЕНИ	Ю:				
Кафедрой	общей	И	медицинской	физики	учре	ждения	образо	вания
«Междунарс	дный	госу	дарственный	экологиче	ский	институ	т им.	А.Д.
Сахарова» Б	елорусс	кого	государственн	юго универ	оситет	a		
(протокол №	<u> </u>	от	20)24);				
государствен государствен	нный эн ного ул	солог		тут им. А.				
(протокол №	<u> </u>	OT	20	024)				

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

В связи с возросшей ролью математики в современной науке и технике будущие инженеры нуждаются в серьезной математической подготовке. Изучение математических дисциплин развивает логическое мышление, приучает студента к точности, к умению выделять главное, дает необходимые сведения для понимания сложных задач, возникающих в различных областях человеческой деятельности. Математический аппарат позволяет единообразно описать широкий круг фактов и явлений, провести их детальный количественный анализ, предсказать, как поведет себя объект в различных условиях. Математические модели широко применяются в механике, физике, экологии и т. д. Построение математических моделей реальных физических явлений и процессов нередко приводит к необходимости построения и решения дифференциальных уравнений.

Учебная дисциплина «Дифференциальные уравнения» предполагает наличие у студентов знаний основ математического анализа и линейной алгебры. Эта дисциплина является математической основой различных разделов физики и специальных дисциплин.

Цели обучения дисциплине:

- формирование математической компетентности обучающихся для непрерывного образования и профессиональной деятельности;
- развитие интеллектуального потенциала студентов и способностей их к логическому и алгоритмическому мышлению;
- обучение навыкам работы с основными понятиями и методами решений дифференциальных уравнений, необходимыми для анализа и моделирования устройств, процессов и явлений при поиске оптимальных решений прикладных задач и выбора наилучших способов реализации этих решений.

Задачи обучения дисциплине:

- изучение возможностей использования дифференциальных уравнений при построении математических моделей в физике, химии, экологии и других естественных науках;
 - изучение теоретических основ математического аппарата;
 - применение теоретических основ для решения практических задач;
- привить студентам умение самостоятельного изучения учебной литературы;
 - развить логическое и алгоритмическое мышление;
 - выработать навыки математического исследования прикладных вопросов.

Обучающийся должен владеть следующими **компетенциями**: Использовать дифференциальные уравнения для построения математических моделей и решении прикладных и фундаментальных задач физики (БПК-8).

В результате усвоения дисциплины студент должен

знать:

- основные типы обыкновенных дифференциальных уравнений и методы их решения в квадратурах;
 - методы решения дифференциальных уравнений с частными производными;
 - методы решения систем обыкновенных дифференциальных уравнений;

– условия существования, единственности и устойчивости решений обыкновенных дифференциальных уравнений и систем;

уметь:

- находить общее и частное решения дифференциальных уравнений первого порядка;
- решать линейные дифференциальные уравнения и системы дифференциальных уравнений высших порядков с постоянными коэффициентами;
 - исследовать решения уравнений и систем уравнений на устойчивость;
- решать линейные дифференциальные уравнения с частными производными первого порядка;

владеть:

- основными методами решения дифференциальных уравнений;
- навыками применения математических методов при решении более сложных задач прикладного характера.

Программа курса рассчитана на 108 часов, из которых аудиторных – 58 часов (28 ч. – лекционных, 30 ч. – практических занятий).

Форма получения высшего образования – очная (дневная).

Форма промежуточной аттестации – экзамен в 3-м семестре.

Трудоемкость дисциплины составляет 3 зачетные единицы.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

1. Дифференциальные уравнения первого порядка

Общие понятия из теории обыкновенных дифференциальных уравнений (ОДУ). Понятие дифференциального уравнения. Роль дифференциальных уравнений в естественных науках. Формы записи ДУ первого порядка. Общее и частное решения ДУ первого порядка. Задача Коши. Понятие об интегральных кривых. Изоклины. Теорема существования и единственности решения задачи Коши для ДУ первого порядка. Уравнения, интегрируемые в квадратурах: уравнение, не содержащее искомой функции; уравнение с разделяющимися переменными; однородное уравнение; линейное уравнение; уравнение Бернулли; уравнение в полных дифференциалах; уравнение, допускающее интегрирующий множитель. ДУ высших порядков, допускающие понижение порядка.

2. Линейные дифференциальные уравнения высших порядков. Системы дифференциальных уравнений

Линейные ОДУ высших порядков. Принцип суперпозиции. Линейная независимость функций, фундаментальная система решений ДУ. Вронскиан. Теоремы о структуре общего решения однородного и неоднородного линейного ДУ. Линейные однородные дифференциальные уравнения с постоянными коэффициентами. Характеристическое уравнение. Фундаментальные системы решений. Решение линейных неоднородных дифференциальных уравнений с постоянными коэффициентами и специальной правой частью. Метод Лагранжа вариации произвольных постоянных.

Системы линейных ОДУ. Общее и частное решения системы ДУ, задача Коши. Физический смысл нормальной системы ДУ. Решение систем ДУ методом исключения неизвестных. Первые интегралы системы ДУ. Метод интегрируемых комбинаций. Приложения дифференциальных уравнений к решению задач химии, биологии, экологии, физики.

3. Элементы теории устойчивости

Устойчивость решений ОДУ и систем ОДУ. Фазовое пространство дифференциального уравнения и фазовые траектории. Устойчивость решений по Ляпунову. Критерий устойчивости решений системы по первому приближению. Точки покоя. Особые точки на фазовой плоскости.

4. Дифференциальные уравнения с частными производными

Дифференциальные уравнения в частных производных (ДУЧП) первого порядка. Общие определения. Линейные и квазилинейные уравнения. Задача Коши. ДУЧП второго порядка и их классификация. Решение уравнения колебаний струны методом Фурье.

6 УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ (очная (дневная) форма получения высшего образования)

КИЯ		К					
Номер раздела, темы, занятия	Название раздела, темы	Лекции	Практические (семинарские) занятия	Лабораторные занятия	Управляемая самостоятельная	Иное	Формы контроля знаний
1	2	3	4	5	6	7	8
1	Дифференциальные уравнения первого порядка	8	8			метод. пособие	сам. раб., опрос
2	Линейные дифференциальные уравнения высших порядков. Системы дифференциальных уравнений	10	8			метод. пособие	сам. раб., опрос
	Контрольная работа		2				
3	Элементы теории устойчивости	4	4			метод. пособие	сам. раб., опрос
4	Дифференциальные уравнения с частными производными	6	6			метод. пособие	сам. раб., опрос
	Контрольная работа	• •	2				
ВСЕГО		28	30				

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Рекомендуемая литература

- 1. Гусак, А.А. Математический анализ и дифференциальные уравнения : справ. пособие к решению задач / А.А. Гусак. 4-е изд. Минск : ТетраСистемс, 2006. 415 с.
- 2. Катковская, И.Н. Дифференциальные и интегральные уравнения : практикум / И.Н. Катковская, Л.А. Хвощинская; Мин-во образования РБ, УО "МГЭИ им. А.Д. Сахарова" БГУ. Минск : ИВЦ Минфина, 2022. 87 с.
- 3. Письменный, Д.Т. Конспект лекций по высшей математике. Полный курс / Д.Т. Письменный. 18-е изд. Москва : АЙРИС-пресс, 2021. 608 с.

Дополнительная

- 4. Березкина, Н.С. Дифференциальные и интегральные уравнения . Тесты : учебное пособие. В 2 ч. Ч. 1 / Н.С. Березкина, А.А. Гринь, В.С. Немец. Минск : РИВШ, 2021.-308 с.
- 5. Березкина, Н.С. Дифференциальные и интегральные уравнения . Тесты : учебное пособие. В 2 ч. Ч. 2 / Н.С. Березкина, А.А. Гринь, В.С. Немец. Минск : РИВШ, 2021. 324 с.
- 6. Глецевич, М.А. Высшая математика. Сборник задач: учеб. пособие: в 3 ч. Ч. 3. Дифференциальные уравнения. Аналитические функции. Элементы функционального анализа / М.А. Глецевич и др. Минск: БГУ, 2015. 480 с.
- 7. Демидович, Б.П. Дифференциальные уравнения : учебное пособие для вузов / Б.П. Демидович, В.П. Моденов. 6-е изд., стер. Санкт-Петербург : Лань, 2022.-280 с.
- 8. Матвеев, Н.М. Сборник задач и упражнений по обыкновенным дифференциальным уравнениям / Н.М. Матвеев. Минск: Вышэйшая школа, 2002. 432 с.
- 9. Эльсгольц, Л.Э. Дифференциальные уравнения $\ /\$ Л.И. Эльсгольц. М.: ЛКИ, 2014. 424 с.
- 10. Шилин, А.П. Дифференциальные и интегральные уравнения : Учебное пособие. М.: ЛЕНАНД, 2023. 312 с.

Инновационные подходы и методы преподавания учебной дисциплины

При организации образовательного процесса используется практикоориентированный который предполагает: подход, освоение содержание образования практических приобретение через решения задач; навыков эффективного выполнения разных видов профессиональной деятельности; использованию процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

В процессе чтения лекций используются мультимедиа презентации. В процессе проведения практических занятий используются дидактические материалы, включающие задачи повышенной сложности. Использование

дидактических материалов позволяет работать хорошо успевающим студентам с большим коэффициентом полезного действия.

Изучение дисциплины предусматривает систематическую самостоятельную работу студентов с рекомендуемыми учебно-методическими материалами, Internet-источниками и другими источниками.

Для организации самостоятельной работы студентов по курсу необходимо использовать современные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа, методические указания к практическим занятиям, список рекомендуемой литературы и информационных ресурсов, задания в тестовой форме для самоконтроля и др.).

Самостоятельная работа осуществляется в виде аудиторных и внеаудиторных форм. Для самостоятельной работы студентам предлагаются индивидуальные домашние задания. В рамках индивидуальных консультаций студенты обсуждают ход выполнения индивидуальных домашних заданий.

Перечень рекомендуемых средств диагностики

С целью диагностики знаний, умений и навыков студентов по данной дисциплине рекомендуется использовать:

- 1. контрольные работы;
- 2. самостоятельные работы;
- 3. тесты;
- 4. коллоквиумы по пройденному теоретическому материалу;
- 5. устный опрос в ходе практических занятий;
- 6. проверку конспектов лекций студентов.

Оценка учебных достижений студента производится по десятибалльной шкале.

Темы самостоятельных работ:

- 1. Обыкновенные дифференциальные уравнения первого порядка.
- 2. Дифференциальные уравнения высших порядков, допускающие понижение порядка.
- 3. Линейные дифференциальные уравнения с постоянными коэффициентами.
- 4. Системы линейных дифференциальных уравнений с постоянными коэффициентами.
 - 5. Устойчивость решений систем дифференциальных уравнений.
 - 6. Дифференциальные уравнения с частными производными.

Темы итоговой контрольной работы

- 1. Обыкновенные дифференциальные уравнения первого и второго порядков. Системы дифференциальных уравнений.
- 2. Устойчивость. Дифференциальные уравнения с частными производными.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Согласования с другими дисциплинами не требуется			