4. Kypasnes A.JI., Hectuk T.A. CoumnambHO-TICUXOJOTHUYECKUE TOCIEACTBUS
BHEJIPEHUSI HOBBIX TEXHOJIOTHMH: TICPCIICKTUBHBIE HAMpAaBICHUS HWCCICAOBaHUN //
[Mcuxonmoruueckuit sxypHai. 2019. T. 40. Ne 5. C. 35-47. DOI 10.31857/5020595920006074-7

5. lludpoBeie pecypchl Kak CpeACTBO MOMJISPKKH CTYICHTOB C OTPaHUYEHHBIMHU
Bo3MOkHOCTsIMU 3710poBbst / JI. I1. KonnoBa, B. A. Jlunartos, K. K. Cupounanze, 1. K.

Crenansin // Bectnuk Hwmxeroponckoro ynmepcuteta uM. H.M. JloGaueBckoro. Cepus:
Cornuanbhbie Hayku. — 2022. — Ne 2(66). — C. 59-64. — DOI 10.52452/18115942 2022 _2 59.

TEACHING SOLVING MATHEMATICAL PROBLEMS USING MATLAB
Kurbonov E., Rakhimov N., Jurayev S., Kupaysinov S.

Tashkent University of Architecture and Construction, Tashkent city

Abstract. This article explores the effectiveness of using MATLAB as a tool for solving
mathematical problems. MATLAB, renowned for its versatility and robust numerical
capabilities, serves as a powerful platform for mathematical computation, analysis, and
visualization. The article begins by introducing the fundamental concepts of MATLAB
programming, including variables, arrays, functions, and control structures. It then delves into
problem-solving approaches such as decomposition, algorithm design, and iterative refinement,
illustrating their application through practical examples across various mathematical domains.

Key words. MATLAB, mathematical computation, problem-solving, linear algebra,
calculus, differential equations, optimization, statistical analysis, programming, debugging,
error handling, versatility, efficiency, interactivity, visualization, integration, learning,
exploration.

Introduction. MATLAB, short for "MATTrix LABoratory,"” stands as a cornerstone in the
realm of computational mathematics and engineering. Developed by MathWorks, MATLAB
serves as a robust platform for numerical computation, data analysis, visualization, and
algorithm development. Its versatility and wide-ranging applications make it indispensable in
academic research, industrial innovation, and beyond. At its core, MATLAB offers a rich
environment where users can perform a myriad of mathematical operations with ease and
efficiency. From basic arithmetic calculations to advanced numerical simulations, MATLAB
provides a comprehensive suite of tools tailored to meet the demands of modern mathematics
and engineering disciplines. What sets MATLAB apart is its intuitive syntax and extensive
library of built-in functions, allowing users to express complex mathematical concepts in a
concise and readable manner. Whether tackling linear algebra, differential equations,
optimization problems, or statistical analysis, MATLAB provides a powerful framework for
problem-solving across diverse domains. Furthermore, MATLAB's interactive environment
facilitates rapid prototyping and experimentation, enabling users to iterate on ideas seamlessly.
Its integration with Simulink, a graphical environment for modeling and simulating dynamic
systems, further expands its utility in engineering design and simulation tasks.

In this article, we will explore the fundamentals of MATLAB and delve into its
application in solving various mathematical problems. Through examples, tutorials, and
practical insights, readers will gain a deeper understanding of how MATLAB can revolutionize
their approach to mathematical computation and analysis. Whether you're a seasoned
researcher, an aspiring engineer, or a student delving into the intricacies of mathematics,
MATLAB offers a powerful toolkit to unlock new possibilities and drive innovation forward.

Problem-Solving Approaches: In MATLAB, problem-solving involves translating
mathematical concepts into executable code to analyze data, simulate systems, or derive
solutions to complex problems. Effective problem-solving in MATLAB relies on employing

29

structured approaches to tackle mathematical challenges efficiently. Here are some key
problem-solving approaches:

1. Decomposition: Break down complex problems into smaller, more manageable tasks
or sub-problems. Identify the key components or steps required to solve each sub-problem.
Implement and test solutions for each sub-problem independently before integrating them into
a comprehensive solution.

2. Algorithm Design: Design algorithms that outline the steps necessary to solve a
particular problem. Specify the input parameters, processing steps, and output requirements for
the algorithm. Choose appropriate data structures and algorithms to optimize performance and
accuracy.

3. lterative Refinement: Start with a simple solution or initial implementation of the
problem-solving approach. Test the solution using sample data or known solutions to identify
errors or areas for improvement. Refine the solution iteratively by addressing identified issues
and optimizing performance.

4. Modularization: Encapsulate reusable code segments into functions or scripts to
promote code modularity and reusability. Divide the problem-solving process into smaller, self-
contained modules with well-defined interfaces. Modularization facilitates code organization,
maintenance, and collaboration among multiple developers.

5. Vectorization: Leverage MATLAB's vectorized operations to perform computations
efficiently on arrays and matrices. Avoid unnecessary loops by expressing operations as matrix
operations whenever possible. Vectorization improves code readability and performance by
taking advantage of MATLAB's optimized numerical libraries.

6. Optimization Techniques: Explore optimization algorithms available in MATLAB to
solve mathematical optimization problems. Choose appropriate optimization techniques based
on the problem characteristics, such as linear programming, nonlinear optimization, or
constrained optimization. Fine-tune algorithm parameters and constraints to achieve desired
optimization outcomes.

7. Visualization and Interpretation: Utilize MATLAB's plotting and visualization
capabilities to analyze and interpret mathematical results. Generate plots, graphs, and
visualizations to illustrate relationships, trends, and patterns in the data. Customize plots with
labels, titles, legends, and annotations to enhance clarity and insight. By applying these
problem-solving approaches in MATLAB, users can effectively tackle a wide range of
mathematical problems, from simple calculations to complex simulations and optimization
tasks. In the subsequent sections, we'll illustrate these approaches through practical examples
and demonstrate how MATLAB's features can be leveraged to address real-world mathematical
challenges.

Debugging and Error Handling in MATLAB: While writing MATLAB code for solving
mathematical problems, it's common to encounter errors or unexpected behavior.
Understanding how to effectively debug code and handle errors is essential for ensuring the
correctness and robustness of your solutions. In this section, we'll discuss debugging techniques
and error handling strategies in MATLAB.

Error Handling Strategies: Try-Catch Blocks: Use try-catch blocks to handle
exceptions gracefully. Place the code that might generate an error within a try block and specify
how to handle the error in the catch block. This prevents the entire program from crashing if an
error occurs.

try

% Code that might generate an error
catch ME

% Handle the error

disp(['Error occurred: ', ME.message));

30

end

Debugging and Profiling Tools: MATLAB Debugger: Use the MATLAB debugger to
step through your code line by line, inspect variable values, and identify errors. Set breakpoints
at specific lines of code to pause execution and examine the program state.

Profiler: Utilize MATLAB's built-in profiler to identify performance bottlenecks and
optimize your code. The profiler provides insights into function execution times, memory
usage, and function call hierarchies, helping you optimize code efficiency.

By employing these debugging and error handling techniques in MATLAB, you can
effectively identify and resolve issues in your mathematical code, ensuring its correctness and
reliability. Debugging tools, error handling strategies, and profiler insights empower you to
develop robust and efficient MATLAB solutions for a wide range of mathematical problems.

Conclusion. In this article, we explored the use of MATLAB as a powerful tool for
solving mathematical problems across diverse domains. We covered fundamental concepts
such as variables, arrays, functions, and control structures, which form the basis of MATLAB
programming. We then discussed problem-solving approaches, including decomposition,
algorithm design, and iterative refinement, which help tackle complex mathematical challenges
effectively. In addition, we highlighted debugging techniques and error handling strategies to
ensure the correctness and reliability of MATLAB code. Debugging tools, error handling
mechanisms, and profiling utilities empower users to identify and resolve issues efficiently,
enhancing the robustness of their mathematical solutions.

Efficiency: MATLAB offers optimized numerical algorithms and vectorized operations,
enabling efficient computation of mathematical solutions.

Versatility: MATLAB supports a wide range of mathematical domains, from linear
algebra and calculus to differential equations, optimization, and statistics.

Interactivity: MATLAB's interactive environment allows for rapid prototyping,
experimentation, and visualization, facilitating an iterative approach to problem-solving.

Ease of Use: MATLAB's intuitive syntax and extensive documentation make it accessible
to users at various skill levels, from beginners to experienced professionals.

Integration: MATLAB seamlessly integrates with other tools and languages, such as
Simulink for modeling and simulation, further expanding its utility in engineering and scientific
applications.

Suggestions for research: As you continue your journey in mathematical exploration and
problem-solving, | encourage you to delve deeper into MATLAB's capabilities. Experiment
with advanced features, explore additional toolboxes, and tackle more complex mathematical
challenges. Leverage online resources, tutorials, and community forums to expand your
knowledge and skills in MATLAB.

References

1. Majid, M. A., Huneiti, Z. A., Balachandran, W., & Balarabe, Y. (2013). MATLAB as
a teaching and learning tool for mathematics: a literature review. International Journal of Arts
& Sciences, 6(3), 23.

2. Ochkov, V. F., & Bogomolova, E. P. (2015). Teaching mathematics with mathematical
software. Journal of Humanistic Mathematics, 5(1), 265-285.

3. Attaway, D. C. (2013). Matlab: a practical introduction to programming and problem
solving. Butterworth-Heinemann.

4. Larsen, K. F., Hossain, N. M. A., & Weiser, M. W. (2016, June). Teaching an
undergraduate introductory MATLAB course: Successful implementation for student learning.
In 2016 ASEE Annual Conference & Exposition.

5. Larkins, D. B., & Harvey, W. (2010). Introductory computational science using
MATLAB and image processing. Procedia Computer Science, 1(1), 913-919.

31

6. Kurbonov, E., Rakhimov, N., Juraev, S., & Islamova, F. (2023). Derive the finite
difference scheme for the numerical solution of the first-order diffusion equation IBVP using
the Crank-Nicolson method. In E3S Web of Conferences (Vol. 402, p. 03029). EDP Sciences.

O METOJMKE OBYYEHUA CTYAEHTOB HEKOTOPBIM METOJAM
PEHIEHUA JUOPAHTOBBIX YPABHEHUU
OcranoB K., Tunasos P.A.

Camapranockuil cocyoapcmeennwiil ynusepcumem umenu Illlapoga Pawudosa,
2. Camapxrarno

Jl1o¢haHTOBBIM ypaBHEHHEM IIEPBOIO MOPsAKA C ABYMsI HEM3BECTHBIMU X, Y Ha3bIBAETCS
ypaBHeHMe Buaa mx + ny =k, rne m,n, k,x,y € Z. Mpl npennonaraeM, 4To m U n —
B3aMMHO IPOCThIe yncia. Ecnu 3To He Tak, Bceria MOXKHO pa3JeuTh 00€ YaCTH ypaBHEHUS Ha
HauOOJBIINN OOLIUI AeTUTEh M U N (€CNIU B Pe3y/bTaTe B MPAaBOM YaCTH OKaKETCs HeLleJoe
YHCII0, TO TAKOE ypaBHEHHE He OyJieT UMeTh perieHue). Kpome Toro, cnoco6 peuieHus 3aBUCUT
OT TOTO, HACKOJIBKO BEIWKH aOCONIOTHBIE 3HAaYeHHs uucenl M u N. Ecnu xors Obl oquH U3
kod(durmenToB (Hampumep, M) MMEeT Majoe aOCONMIOTHOE 3HAYeHWE, MBI IEPEIUIIeM
ypaBHeHHE B BUjie mx =k —ny. JleBas yacTbh nosyueHHoro ypasHenus (1) penurcs Ha m.
CrnenoBartenbHO, IPABYIO YacTh 3TOTO YPaBHEHUS TOKE MOXKHO pa3JeuTh Ha m. B pe3ynbrare
JIeNIeHUs] Ha M HaxoJuM, YTO MpaBas 4acTh TAKXKe JEIUTCS HAa M IS OJHOIO 3HA4YCHUs U3
3aJJaHHOTO MHTEpBaja C y4eTOM BCEX BO3MOXHBIX ocTtatkoB [=0,1,...,m -1 . IlockoabKy
YHCI0 M Maso Mo a0COIIOTHON BEIMYMHE, BADUAHTOB TOXKEe HEMHOTO [1].

CryneHThl 3HAaKOMBI C METOJIOM Iepedopa pa3iMyHBIX BapHUAHTOB, MPH KOTOPOM HM
npejyiaraercs nepedpars BCe BOZMOYKHBIE BApUAHThI, TAKHE KaK pa3MelleHHe TOCTeH, MOX0 B
KHMHO, CTIOCOOBI ITPOBE/ICHUSI BPEMEHH, pa3jaya clafocTel cpeau neTe u T. 1.

ITpumep 1. Kponuku u daszansl cuat B kietke ¢ 18 Horamu. Haiinure, ckonbko ocobeit
Ka)JIOTO U3 HUX HAXOJUTCS B KIIeTKe?

Pemenne: CocraBuM ypaBHEHUE C IBYMSI HEU3BECTHBIMH, TJI€ X — KOJIMYECTBO KPOJIUKOB,
ay —KkonudecTBo ¢azaHoB: 4x + 2y = 18 mwm 2x + y = 9.Bepazum yuepez x:y = 9 —

2x.

Jlanee ucrnonb3yeM MeTOJ BbIOOpa BapHaHTOB: HE OepeM HEIMOJOKUTEIbHbIE 3HAUYCHUS
X (KOJIMYECTBO HOT' HE MOXKET ObITh 0 MM OTpHULATENbHBIM), a TaKXke X > 4 (B IPOTUBHOM
cilyyae 3HaueHHe y OTpULATEIbHO).

Taxum 00pa3oM, 3a/1a4a UMEET YETHIPE PEIICHUS

X 1 2 3 4
y 7 5 3 1

Otser: (1; 7), (2;5), (3; 3), (4; 1).

[Tpumep 2. Pemnte ypaBHeHue 5x + 8y =39 B HaTypalbHbIX YUCIAX.

Pemenue: [lepenumiem ypaBuenue B Buae 5x =39-8y. UToObl ypaBHEHHE UMEIO CMBICTT
B YCJIOBUSX 3aJ1a4H, Y JOJDKHO OBITH MEHbIIIE WM PaBHO 4, HO Oonbiire 0:

0 <y < 4.]lenaeM BBIOOp 110 HEU3BECTHOMY V'

Ecrmy = 1, 10 x = (39 —8y)/5=(39—-8-1)/5 = 6,2 He sABNseTCA HATYpAITbHBIM
YHCIIOM.

Ecmm y 2,70 X = 4,2 He ABIsAETCA HATYPAJIBbHBIM YHCIIOM.

Ecimy = 3,10 Xx = 3 — HaTypaJbHOE YUCJIO.

Ecnmuy = 4,710 x = 1,42 He sBiseTcs HaTypalbHbIM unciom. OtBert: (3; 3).

Tenepb MmokakxeM MCIOJIb30BaHHE METOa OCTATKOB HAa IPUMEpE CIIEAYIOIIEeH 3a1auu:

32

