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By some transformations, equation (1) is reduced to the following four types of equa-
tions:

Uty + Ay + Agug + A f(u) =0, (2)
Up — Ugg + Ayt + Aguy + Af(u) =0, (3)
Ugt A Uge 4 Aruy + Aoy + Mf (1) = 0, (4)

U + AggUigy + Aptiy + A f(u) = 0. (5)

Equation (2) is a hyperbolic nonlinear Klein-Gordon equation in the first form. Equa-
tion (3) is a hyperbolic nonlinear Klein-Gordon equation in the second form. Equation (4)
is an elliptic nonlinear Klein—-Gordon equation. The equation (5) is a nonlinear convection—
diffusion equation.

The reduction for equation (1) will be carried out using symmetries and substitution
of variables u = y(z(t, z)).

We will look for infinitesimal transformations for equation (1) in the form [2-5]

t=t+er(t,z,u)+..., T=x+el(t,z,u)+..., U=u-+ent,z,u)+...,

and f(i) = f(u) +efD(wn+...
Then the group generator for equation (1) has the form

0 0 0
X = T(t,$,u)a + f(t,x,u)% + n(t,x,u)%.
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The report is devoted to the calculation of the fractional derivatives of the
Mittag-Leffler function with respect to parameters.
We calculate the fractional derivative of the Mittag-Leffler function. We use both main
types of fractional derivatives, namely, the Riemann—Liouville fractional derivative

(RLD“f(T)) (t) := ﬁ% / % n=lul+1,
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and the Dzherbashian—Caputo fractional derivative

/ ") () dr
(PC D f (7)) (t) == F(nl_u) / (tf_ T()Bi#’ n= [+ 1.

It is motivated by the recent approaches to the calculation of the derivatives of special
functions with respect to parameters (see, e.g., [1]) and by the study of evolution equations
in the form proposed in [2].

The Mittag-Leffler function is an entire function of the complex variable z defined by
the following power series (see, e.g. [3]):

Zfak—l—ﬁ

k=0

for every z,8 € C and Rea > 0.
Calculation are based on a complex integral representation of the function 1/I'(z) valid
for unrestricted z (see, e.g., [3, Appendix A):

1 1 et
= — — dt, e C,
[(z) 2mi t? :
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with integration along so called Hankel path Ha_.

1 1 s o—ak— -
(RLDSJDQW) () = k:“% e*s * B (—1In )" ds =: ke (a, B),

a—

1 1
(RLDngﬁm) (B) = 5 s *F(—1n s)* L ds = c(a, B).
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Final results is presented in the form of series:

(" Df, , E zkuck ,
("D, 1) (@) = 3 enla, B)2%.
k=0
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