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has a unique solution 𝑢 in the class 𝐶2( ̃︀𝑄)⋂︀𝐶( ̃︀𝑄0), where ̃︀𝑄 = 𝑄 ∖ {(𝑡, 𝑥) : 𝑥 − 𝑎𝑡 =

= 0∨𝑥−𝑎𝑡 = −𝑎𝑡*} and ̃︀𝑄0 = 𝑄∖{(𝑡, 𝑥) : 𝑥−𝑎𝑡 = 0}. This solution depends continuously
on the functions 𝜙, 𝜓, 𝜇1, 𝜇2, and 𝛾.

The talk is based on a recent preprint [1]. The obtained results expand the previously
known ones [3, 4].
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Consider second-order quasi-linear equations with two independent variables in homo-
geneous isotropic media without perturbations [1]:

𝐴11𝑢𝑡𝑡 + 2𝐴12𝑢𝑡𝑥 + 𝐴22𝑢𝑥𝑥 + 𝐴1𝑢𝑡 + 𝐴2𝑢𝑥 + 𝜆𝑓(𝑢) = 0, (1)

where 𝐴𝑖, 𝐴𝑖𝑗, 𝜆 ∈ R; 𝜆 ̸= 0, 𝑓(𝑢) is a function by 𝑢.
This quasi-linear equation has the following classi�cation:
1) 𝐴2

12 − 𝐴11𝐴22 > 0 � hyperbolic type;
2) 𝐴2

12 − 𝐴11𝐴22 < 0 � elliptical type;
3) 𝐴2

12 − 𝐴11𝐴22 = 0 � parabolic type.
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By some transformations, equation (1) is reduced to the following four types of equa-
tions:

𝑢𝑡𝑥 + 𝐴1𝑢𝑡 + 𝐴2𝑢𝑥 + 𝜆𝑓(𝑢) = 0, (2)

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝐴1𝑢𝑡 + 𝐴2𝑢𝑥 + 𝜆𝑓(𝑢) = 0, (3)

𝑢𝑡𝑡 + 𝑢𝑥𝑥 + 𝐴1𝑢𝑡 + 𝐴2𝑢𝑥 + 𝜆𝑓(𝑢) = 0, (4)

𝑢𝑡 + 𝐴22𝑢𝑥𝑥 + 𝐴2𝑢𝑥 + 𝜆𝑓(𝑢) = 0. (5)

Equation (2) is a hyperbolic nonlinear Klein–Gordon equation in the first form. Equa-
tion (3) is a hyperbolic nonlinear Klein–Gordon equation in the second form. Equation (4)
is an elliptic nonlinear Klein–Gordon equation. The equation (5) is a nonlinear convection–
diffusion equation.

The reduction for equation (1) will be carried out using symmetries and substitution
of variables 𝑢 = 𝑦(𝑧(𝑡, 𝑥)).

We will look for infinitesimal transformations for equation (1) in the form [2–5]̃︀𝑡 = 𝑡+ 𝜀𝜏(𝑡, 𝑥, 𝑢) + . . . , ̃︀𝑥 = 𝑥+ 𝜀𝜉(𝑡, 𝑥, 𝑢) + . . . , ̃︀𝑢 = 𝑢+ 𝜀𝜂(𝑡, 𝑥, 𝑢) + . . . ,

and ̃︀𝑓(̃︀𝑢) = 𝑓(𝑢) + 𝜀𝑓 (1)(𝑢)𝜂 + . . .
Then the group generator for equation (1) has the form

𝑋 = 𝜏(𝑡, 𝑥, 𝑢)
𝜕

𝜕𝑡
+ 𝜉(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑥
+ 𝜂(𝑡, 𝑥, 𝑢)

𝜕

𝜕𝑢
.
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The report is devoted to the calculation of the fractional derivatives of the
Mittag-Leffler function with respect to parameters.

We calculate the fractional derivative of the Mittag-Le�er function. We use both main
types of fractional derivatives, namely, the Riemann�Liouville fractional derivative

(︀
𝑅𝐿𝐷𝜇𝑓(𝜏)

)︀
(𝑡) :=

1

Γ(𝑛− 𝜇)

𝑑𝑛

𝑑𝑡𝑛

𝑡∫︁
0

𝑓(𝜏) 𝑑𝜏

(𝑡− 𝜏)𝜇−𝑛+1
, 𝑛 = [𝜇] + 1,


