CLASSICAL SOLUTION OF AN INITIAL-BOUNDARY VALUE PROBLEM WITH A MIXED BOUNDARY CONDITION AND CONJUGATION CONDITIONS FOR A MILDLY QUASILINEAR WAVE EQUATION

V. I. Korzyuk $^{1,2)}$, J. V. Rudzko $^{1)}$

¹⁾Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus; ²⁾Belarusian State University, Minsk, Belarus korzyuk@bsu.by, janycz@yahoo.com

We consider an initial-boundary value problem for a mildly quasilinear wave equation in the first quadrant in which we pose the Cauchy conditions on the spatial half-line, a mixed boundary condition on the time half-line, and conjugation conditions on some characteristics. We prove the uniqueness of the solution and establish the conditions under which a classical solution exists.

In this report, we consider the following mixed problem

$$\begin{cases}
\Box_{a}u(t,x) = f(t,x,u(t,x),\partial_{t}u(t,x),\partial_{x}u(t,x)), & (t,x) \in Q, \\
u(0,x) = \varphi(x), & \partial_{t}u(0,x) = \psi(x), & x \in [0,\infty), \\
u(t,0) = \mu_{1}(t), & t \in [0,t_{*}), \\
\partial_{x}u(t,0) = \mu_{2}(t), & t \in [t_{*},\infty),
\end{cases}$$
(1)

where $Q = (0, \infty) \times (0, \infty)$, $\Box_a = \partial_t^2 - a^2 \partial_x^2$ is the d'Alembert operator (a > 0 for definiteness), t_* is a positive real number, f is a function given on the set $\overline{Q} \times \mathbb{R}^3$, φ and ψ are functions given on the half-line $[0, \infty)$, μ_1 is a function given on the segment $[0, t_*)$, and μ_2 is a function given on the half-line $[t_*, \infty)$.

Previously, we have announced the existence and uniqueness theorem of a classical solution of the problem (1) under some smoothness and compatibility conditions [1, 2]. But in the present work we won't assume that these compatibility conditions hold.

We present the main results of this report in the following theorem.

Theorem. Let the conditions $f \in C^1(\overline{Q} \times \mathbb{R})$, $\varphi \in C^2([0,\infty))$, $\psi \in C^1([0,\infty))$, $\mu_1 \in C^2([0,t_*])$, $\mu_2 \in C^1([t_*,\infty))$ be fulfilled, and let the function f satisfy the Lipschitz condition

$$|f(t, x, u, u_t, u_x) - f(t, x, z, z_t, z_x)| \leq L(t, x)(|u - z| + |u_t - z_t| + |u_x - z_x|)$$

with a continuous function $L: \overline{Q} \mapsto [0,\infty)$. The mixed problem (1) with conjugation conditions

$$[(u)^{+} - (u)^{-}](t, x = at) = \gamma(t; \varphi(0) - \mu_{1}(0)), \quad [(u)^{+} - (u)^{-}](t, x = at - at_{*}) = 0,$$

where $\gamma : [0,\infty) \ni t \mapsto \gamma(t;\varphi(0) - \mu_1(0)) \in \mathbb{R}$ is a function with one parameter $\varphi(0) - \mu_1(0)$ that satisfies the natural comparability condition

$$\gamma(t;0)=0, \quad t\in [0,\infty), \quad \gamma(0;s)=s, \quad s\in \mathbb{R},$$

has a unique solution u in the class $C^2(\widetilde{Q}) \bigcap C(\widetilde{Q}_0)$, where $\widetilde{Q} = \overline{Q} \setminus \{(t,x) : x - at = 0 \lor x - at = -at_*\}$ and $\widetilde{Q}_0 = \overline{Q} \setminus \{(t,x) : x - at = 0\}$. This solution depends continuously on the functions $\varphi, \psi, \mu_1, \mu_2$, and γ .

The talk is based on a recent preprint [1]. The obtained results expand the previously known ones [3, 4].

The report was financially supported by the National Academy of Sciences of Belarus in the framework of implementing the scientific research program "Solutions of problems with non-smooth boundary conditions for hyperbolic equations" (agreement No 2024-25-141) and Ministry of Education of the Republic of Belarus & the National Academy of Sciences of Belarus in the framework of implementing the state scientific research program "Convergence–2025" (state reg. No 20212281).

References

1. Korzyuk V. I., Rudzko J. V. Classical solutions of an initial-boundary value problem with a mixed boundary condition for a mildly quasilinear wave equation // Materials of the 11th International Workshop "Analytical Methods of Analysis and Differential Equations" (AMADE–2024). Minsk, 2024. P. 34–35.

2. Korzyuk V. I., Rudzko J. V. Classical solutions of a mixed problem with the Zaremba boundary condition for a mildly quasilinear wave equation // Research Square [Preprint].

3. Korzyuk V. I., Rudzko J. V. Classical solution of the first mixed problem for the telegraph equation with a nonlinear potential // Differ. Equat. 2022. V. 58. № 2. P. 175–186.

4. Korzyuk V. I., Rudzko J. V. Classical and mild solution of the first mixed problem for the telegraph equation with a nonlinear potential // Izv. Irkutsk. Gos. Univ., Ser. Mat. 2023. V. 43. P. 48–63.

ANALYTICAL SOLUTIONS OF SOME SECOND-ORDER QUASI-LINEAR EQUATIONS WITH TWO INDEPENDENT VARIABLES IN HOMOGENEOUS ISOTROPIC MEDIA WITHOUT PERTURBATIONS

V. I. Korzyuk^{1,2)}, D.S. Zhalukevich¹⁾

¹⁾Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk, Belarus; ²⁾Belarusian State University, Minsk, Belarus korzyuk@bsu.by, den.zhal@yandex.by

Consider second-order quasi-linear equations with two independent variables in homogeneous isotropic media without perturbations [1]:

$$A_{11}u_{tt} + 2A_{12}u_{tx} + A_{22}u_{xx} + A_1u_t + A_2u_x + \lambda f(u) = 0, \tag{1}$$

where $A_i, A_{ij}, \lambda \in \mathbb{R}$; $\lambda \neq 0$, f(u) is a function by u.

This quasi-linear equation has the following classification:

- 1) $A_{12}^2 A_{11}A_{22} > 0$ hyperbolic type;
- 2) $A_{12}^{2} A_{11}A_{22} < 0$ elliptical type;
- 3) $A_{12}^2 A_{11}A_{22} = 0$ parabolic type.