БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского государственного университета

А.Д.Король

15 июля 2024 г Регистрационный №УД-13622/уч.

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ УРАВНЕНИЙ **МАТЕМАТИЧЕСКОЙ ФИЗИКИ**

Учебная программа учреждения образования по учебной дисциплине для специальности:

1-31 03 01 Математика (по направлениям)

Направление специальности: 1-31 03 01-01 Математика (научно-производственная деятельность) Учебная программа составлена на основе ОСВО 1-31 03 01-2021, учебных планов № G31-1-003/уч. от 25.05.2021, № G31-1-061/уч.ин. от 31.05.2021, № G31-1-207/уч. от 22.03.2022, № G31-1-243/уч.ин. от 27.05.2022.

составители:

Ф.Е. Ломовцев, профессор кафедры математической кибернетики механикоматематического факультета Белорусского государственного университета, доктор физико-математических наук, профессор.

РЕЦЕНЗЕНТЫ:

И.В. Кашникова, доцент кафедры микропроцессорных систем и сетей Института информационных технологий Белорусского государственного университета информатики и радиоэлектроники, кандидат физикоматематических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой математической кибернетики БГУ (протокол № 11 от 31.05.2024);

Научно-методическим советом БГУ (протокол № 9 от 28.06.2024)

Zapanyayyy Kadanoğ	1	А.Л. Гладков
Заведующий кафедрой	Sano	л.л. 1 ладков

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Дополнительные главы уравнений математической физики»: научить студентов владеть основными понятиями теории дифференциальных уравнений с частными производными, методами построения математических моделей различных процессов и явлений естествознания и математическими методами исследования и решения основных краевых задач математической физики.

Задачи учебной дисциплины:

- освоение важнейших понятий теории дифференциальных уравнений с частными производными (классические и обобщенные решения дифференциальных уравнений с частными производными, решения краевых задач);
- классификация и приведение к каноническому виду дифференциальных уравнений с частными производными второго порядка;
- постановка краевых задач математической физики, моделирующих нестационарные процессы колебаний струны и нестационарные процессы теплообмена, диффузии веществ и сорбции газов;
- изучение методов решения задачи Коши для гиперболических и параболических уравнений математической физики;
- изучение методов решения смешанных задач для гиперболических и параболических уравнений математической физики;
- решение задачи Штурма—Лиувилля на собственные функции и собственные значения, возникающей в смешанных задачах для гиперболических и параболических уравнений математической физики;
- изучение методов решения краевых задач для эллиптических уравнений математической физики.

Место учебной дисциплины в системе подготовки специалиста с высшим образованием.

Учебная дисциплина относится к дополнительным видам обучения (компонент учреждения высшего образования).

Связи с другими учебными дисциплинами, включая учебные дисциплины: «Дифференциальные уравнения», «Математический анализ», «Уравнения математической физики» компонента учреждения высшего образования.

Требования к компетенциям

Освоение учебной дисциплины «Дополнительные главы уравнений математической физики» должно обеспечить формирование следующих базовых компетенций:

Базовые компетенции:

Строить и анализировать дифференциальные модели.

В результате освоения учебной дисциплины студент должен:

знать:

- приложения линейного программирования в исследовании операций;
- понятия и алгоритмы, связанные с дискретными задачами оптимизации, которые формулируются на языке ориентированных графов.

уметь:

- использовать симплекс-метод для решения задач линейного программирования;
- строить модели комбинаторных задач в терминах линейного и целочисленного программирования;
- использовать основные методы и алгоритмы теории математического программирования для решения задач дискретной оптимизации;
 - применять основные методы теории расписаний;
- строить математические модели дискретных задач оптимизации, задач линейного программирования.

владеть:

- методами решения экстремальных задач теории графов;
- методами исследования сетевых моделей.

Структура учебной дисциплины

Дисциплина изучается в 7 семестре. В соответствии с учебным планом всего на изучение учебной дисциплины «Дополнительные главы уравнений математической физики» отведено для очной формы получения высшего образования — 90 часов, в том числе 36 аудиторных часов, лекции — 18 часов, лабораторные занятия — 18 часов. Из них:

Лекции — 18 часов, лабораторные занятия — 14 часов, управляемая самостоятельная работа — 4 часа.

Форма промежуточной аттестации – зачет

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. Уравнения математической физики и задачи для них

Тема 1.1. Вывод уравнения поперечных колебаний мембраны.

Разработка алгоритмов для классификации уравнений с частными производными. Разработка алгоритмов для приведения к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными.

Tema 1.2. Уравнение неразрывности, энергии, газовой динамики и гидродинамики.

Нелинейные волновые уравнения. Уравнения переноса.

Tema 1.3. Обобщение волнового уравнения и уравнения теплопроводности.

Солитоны и нелинейные волновые уравнения. Уравнение переноса. Обобщение волнового уравнения и уравнения теплопроводности.

Тема 1.4. Задачи для уравнений гиперболического, параболического, эллиптического типов.

Постановка основных краевых задач для линейного дифференциального уравнения второго порядка. Задача Коши. Теорема Ковалевской.

Раздел 2. Эллиптические уравнения

Тема 2.1. Пространство L₂. Пространства Соболева.

Теорема о вложении. Теорема о компактности вложения.

Tema 2.2. Обобщенное решение задачи Дирихле для уравнения Пуассона.

Классические и обобщенные решения задачи Дирихле для уравнения Пуассона.

Тема 2.3. Обобщенное решение задачи Неймана.

Обобщенное решение граничной задачи третьего рода для уравнения Пуассона.

Тема 2.4. Задача на собственные значения и собственные функции для оператора Лапласа с условиями Дирихле, Неймана.

Собственные функции и собственные значения оператора Лапласа с условиями Дирихле, Неймана. Свойства собственных функций.

Тема 2.5. Уравнения теории специальных функций.

Цилиндрические функции.

Тема 2.6. Полиномы и присоединенные функции Лежандра.

Полиномы Якоби, Чебышева, Лагерра и Эрмита.

Тема 2.7. Граничные задачи для уравнения Пуассона в круговом цилиндре.

Сферические и шаровые функции.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

- ,			Количество аудиторных часов				OB	
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля
1	2	3	4	5	6	7	8	9
1	Уравнения математической физики и задачи для них	4			6			
	Вывод уравнения поперечных колебаний мембраны.	1						опрос
1.2	Уравнение неразрывности, энергии, газовой динамики и гидродинамики.	1			2			опрос
	Обобщение волнового уравнения и уравнения теплопроводности.	1			2			Опрос. Доклад с презентацией
	Задачи для уравнений гиперболического, параболического, эллиптического типов.	1			2		2	Письменная контрольная работа № 1 по разделу 1
2	Эллиптические уравнения	14			8			

2.1	Пространство L_2 . Пространства Соболева.	2				опрос
2.2	Обобщенное решение задачи Дирихле для уравнения Пуассона.	2				опрос
2.3	Обобщенное решение задачи Неймана.	2				опрос
2.4	Задача на собственные значения и собственные функции для оператора Лапласа с условиями Дирихле, Неймана.	2		2		Опрос. Доклад с презентацией
2.5	Уравнения теории специальных функций.	2				Опрос
2.6	Полиномы и присоединенные функции Лежандра.	2		2		опрос
2.7	Граничные задачи для уравнения Пуассона в круговом цилиндре.	2		4	2	Письменная контрольная работа № 2 по разделу 2
	ИТОГО	18		14	4	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Деревич, И.В. Практикум по уравнениям математической физики/ И.В. Деревич. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 428с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/212843.
- 2. Емельянов, В. М. Уравнения математической физики. Практикум по решению задач : учебное пособие для вузов / В. М. Емельянов, Е. А. Рыбкина. 3-е изд., стер. Санкт-Петербург : Лань, 2021. 216 с. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/156410.
- 3. Карчевский, М.М. Лекции по уравнениям математической физики: учебное пособие для вузов / М. М.Карчевский. 4-е изд., стер. Санкт-Петербург: Лань, 2023. —164 с. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/321200.
- 4. Палин, В. В. Методы математической физики. Лекционный курс : учебное пособие для вузов, для студентов высших учебных заведений, обучающихся по естественнонаучным направлениям / В. В. Палин, Е. В. Радкевич ; МГУ им. М. В. Ломоносова. 2-е изд., испр. и доп. Москва : Юрайт, 2021. 222 с.

Дополнительная литература

- 1. Алексеев, Г.В. Классические методы математической физики : учебное пособие. Часть 2 / Г.В. Алексеев. Владивосток: Изд-во Дальневосточного университета, 2005.-416 с.
- 2. Байков, В.А. Уравнения математической физики / В.А. Байков, А.В. Жибер. Москва-Ижевск: Институт компьютерных исследований, 2003. 252 с.
- 3. Барашков, В.А. Методы математической физики : учебное пособие/ В.А. Барашков. М.: Инфра-М, 2018. 480 с.
- 4. Бицадзе, А.В. Уравнения математической физики/ А.В. Бицадзе. М.: Альянс, 2017. 336 с.
- 5. Владимиров, В.С. Уравнения математической физики : учебник для вузов / В.С. Владимиров, В.В. Жаринов. М.: Физико-математическая литература, $2000.-400~\rm c$.
- 6. Горюнов, А.Ф. Методы математической физики в примерах и задачах/ А.Ф. Горюнов. В 2 т. Т1. М.: Физматлит, 2015. 872 с.; Т2. М.: Физматлит, 2018. 772 с.
- 7. Михайлов, В.П. Дифференциальные уравнения в частных производных : учебное пособие. М. : Наука, 1983. 424с.
- 8. Шаньков, В.В. Лекции по уравнениям математической физики : учебное пособие / В.В. Шаньков. Спб.: Амтейя, 2023. 256 с.

- 9. Пикулин, В.П. Практический курс по уравнениям с частными производными / В.П. Пикулин. 2-изд., стер. М.: Изд-во МЦНМО, 2004. 208 с.
- 10. Кулешов, А.А. Уравнения математической физики в системе Mathematica / А.А. Кулешов. Мн.: БГУ, 2004. 294 с. https://elib.bsu.by/handle/123456789/4630.
- 11. Кулешов, А.А. Уравнения математической физики: лабораторный практикум для студентов механико-математического факультета БГУ / А.А. Кулешов, В.И. Чесалин, Н.И. Юрчук. Мн.: БГУ, 2005. 29 с. https://elib.bsu.by/handle/123456789/8070.

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Объектом диагностики компетенций студентов являются знания, умения, полученные ими в результате изучения учебной дисциплины. Выявление учебных достижений студентов осуществляется с помощью мероприятий текущего контроля и промежуточной аттестации.

Для диагностики компетенций могут использоваться следующие средства текущего контроля:

- опрос;
- письменная контрольная работа;
- доклад с презентацией;

Контрольные мероприятия проводятся в соответствии с учебнометодической картой дисциплины. В случае неявки на контрольное мероприятие по уважительной причине студент вправе по согласованию с преподавателем выполнить его в дополнительное время. Для студентов, получивших неудовлетворительные отметки за контрольные мероприятия, либо не явившихся по неуважительной причине, по согласованию с преподавателем и с разрешения заведующего кафедрой мероприятие может быть проведено повторно.

Формой промежуточной аттестации по дисциплине «Дополнительные главы уравнений математической физики» учебным планом предусмотрен зачет.

Примерный перечень заданий для управляемой самостоятельной работы

Tema 1.4. Задачи для уравнений гиперболического, параболического, эллиптического типов. (2 ч)

Управляемая самостоятельная работа предполагает изучение учебного материала раздела по основной и дополнительной литературе. Усвоение материала контролируется в выполнении контрольной работы.

Примерный перечень заданий:

1. решение простейших дифференциальных уравнений с использованием систем компьютерной математики;

- 2. разработка алгоритмов для классификации уравнений с частными производными и их реализация в системе компьютерной математики;
- 3. Разработка алгоритмов для приведения к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными. Реализация алгоритмов в системе компьютерной математики.

Форма контроля - контрольная работа № 1.

Тема 2.7. Граничные задачи для уравнения Пуассона в круговом цилиндре (2 ч)

Управляемая самостоятельная работа предполагает изучение учебного материала раздела по основной и дополнительной литературе. Усвоение материала контролируется в выполнении контрольной работы.

Примерный перечень заданий:

- 1. Решение краевых задач для уравнений Пуассона с использованием систем компьютерной математики в круге.
- 2. Решение краевых задач для уравнений Пуассона с использованием систем компьютерной математики в прямоугольнике.
- 3. Гармонические функции. Визуализация принципа максимума в системе компьютерной математики.

Форма контроля - контрольная работа № 2.

Примерный перечень лабораторных занятий

- 1. Обобщение волнового уравнения и уравнения теплопроводности. Солитоны и нелинейные волновые уравнения. Уравнение переноса. Обобщение волнового уравнения и уравнения теплопроводности.
- 2. Задачи для уравнений гиперболического, параболического, эллиптического типов.
- 3. Задача на собственные значения и собственные функции для оператора Лапласа с условиями Дирихле, Неймана.
 - 4. Полиномы и присоединенные функции Лежандра.
 - 5. Полиномы Якоби, Чебышева.
 - 6. Полиномы Лагерра и Эрмита.
- 7. Граничные задачи для уравнения Пуассона в круговом цилиндре. Сферические и шаровые функции.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется практикоориентированный подход, который предполагает:

- усвоение материала через решение практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;

- ориентацию на выполнение студенческих групповых заданий при подготовке доклада;
- использование различных способов оценивания деятельности студентов;
- самостоятельную подготовку научных докладов и выступление с ними на лабораторных занятиях группы.

Методические рекомендации по организации самостоятельной работы

организации самостоятельной работы студентов по дисциплине «Дополнительные главы уравнений математической физики» используются современные информационные ресурсы: размещается на образовательном портале комплекс учебных учебно-методических материалов (учебно-программные материалы, учебное издание теоретического изучения дисциплины, материалы текущего контроля и промежуточной аттестации, позволяющие определить соответствие учебной деятельности обучающихся требованиям образовательного стандарта высшего образования и учебно-программной документации, в т.ч. вопросы подготовки к зачету, экзамену, задания, вопросы для самоконтроля и др., список рекомендуемой литературы, информационных ресурсов и др.).

Доклад с презентацией — самый эффективный способ донесения важной информации при публичных выступлениях. Слайд-презентации с использованием мультимедийного оборудования позволяют эффективно и наглядно представить содержание изучаемого материала, выделить и проиллюстрировать сообщение, которое несет поучительную информацию, показать ее ключевые содержательные пункты. Использование интерактивных элементов позволяет усилить эффективность публичных выступлений.

Группам студентов предлагается подготовить в заключении изучения каждого раздела доклад с презентацией по изучаемой теме с элементами практического использования.

Примерный перечень вопросов к зачету

- 1. Вывод уравнения поперечных колебаний мембраны.
- 2. Уравнение неразрывности, энергии, газовой динамики и гидродинамики.
 - 3. Нелинейные волновые уравнения. Уравнения переноса.
- 4. Обобщение волнового уравнения и уравнения теплопроводности. Солитоны и нелинейные волновые уравнения.
- 5. Уравнение переноса. Обобщение волнового уравнения и уравнения теплопроводности.
- 6. Задачи для уравнений гиперболического, параболического, эллиптического типов.
 - 7. Пространство L_2 .
 - 8. Пространства Соболева.

- 9. Обобщенное решение задачи Дирихле для уравнения Пуассона.
- 10. Обобщенное решение задачи Неймана для уравнения Пуассона.
- 11. Обобщенное решение граничной задачи третьего рода для уравнения Пуассона.
- 12. Задача на собственные значения и собственные функции для оператора Лапласа с условиями Дирихле.
- 13. Задача на собственные значения и собственные функции для оператора Лапласа с условиями Неймана.
 - 14. Уравнения теории специальных функций.
 - 15. Цилиндрические функции.
 - 16. Полиномы и присоединенные функции Лежандра.
 - 17. Полиномы Якоби, Чебышева.
 - 18. Полиномы Лагерра и Эрмита.
 - 19. Граничные задачи для уравнения Пуассона в круговом цилиндре.
 - 20. Сферические и шаровые функции.
- 21. Задачи для гиперболического уравнения второго порядка в случае двух независимых переменных.
- 22. Решение задачи Коши для волнового уравнения. Метод последовательных приближений.
- 23. Классическое решение смешанных задач для одномерного волнового уравнения методом характеристик.
- 24. Энергетическое неравенство для задачи Коши. Операторы осреднения с переменным шагом.
- 25. Энергетическое неравенство для смешанных задач гиперболического уравнения.
- 26. Сильное решение смешанных задач для гиперболического уравнения.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название учебной дисциплины, с которой требуется согласование	Название кафедры	Предложения об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
Учебная программа не требует согласования			

Заведующий кафедрой

Fine

А.Л.Гладков

31. MOS 2024 r.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на	/	учебный год

№ п/п	Дополнения и изменения	Основание
Учебн	ая программа пересмотрена и одобрена на	заседании кафедры от 202_ г.)
	(IIpo10K0J1 J1º	01 202_1.)
Заведу	ующий кафедрой	
	РЖДАЮ факультета	