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O TEH30PAX U MHOI'OMEPHBIX MATPUIIAX
BO MHOI'OMEPHOM BEPOATHOCTHOM MOJIEJIMPOBAHUN

B.C. Myxa

Benopyccruii 2ocyoapemeennbiil ynueepcumem ungopmamux u paouodieKmpoHuKLL,
ya. I1. Bposku 6, Munck 220013, Benapycs, mukha@bsuir.by

IIpoBenen aHanu3 OOMMX KOHIENUIUH KaK TEH30pHOIO, TaK M MHOIOMEpHO-
MaTPUYHOTO TMOAXO0/J0B B BEPOSTHOCTHOM MOJEIHMPOBAHHMM, a TAK)KE YCTAHOBJIEHBI COOT-
HOILIEHUSI MEXKIY TEH30paMU MU MHOTOMEpPHBIMH MaTpullaMd. MaTpU4YHOE INpENCTaBICHUE
oTpesieNIeHUs] TEH30POB BTOPOI'O MOPsiiKa, U3BECTHOE B JIUTEPAType, 000OIIEHO ISl TEH30-
POB MPOU3BOJILHOTO MOPAIKA. JJ0Ka3aHbI TEOPEMBI O MPOUCXOKIECHUH TEH30POB Uil KOBa-
PHALMOHHBIX MAaTPHUI] ¥ MHOTOMEPHBIX MaTpHI] MOMEHTOB ITPOU3BOJBHOIO MOPSAKA CIIy-
YJaifHbIX BEKTOpOB. /loka3zaHa Teopema 00 OpTOrOHAIBHOCTH MAaTPHUIbI TPE0OPa30BaAHUS JUIS
MHOTOMEPHOTO MaTPUYHOTO MOMEHTA ITPOU3BOJIBLHOIO MOpPSAAKA CIYy4alHOrO BEKTOpa IpH
YCJIOBUH OPTOTOHAIBHOCTH NMPeoOpa30BaHMs CIIy4aifHOTO BEKTOpA.

Kniouesvie cnoea: MHOT'OMCPHOC BCPOATHOCTHOC MOICIUPOBAHUC, JINHEMHOE BEK-

TOPHOE TMPOCTPAHCTBO; TEH30p; MHOTOMEpHAasi MaTpUlla; MHOIOMEPHO-MaTpUYHOE Mpel-
CTaBJICHHE TEH30pa; MHOTOMEPHO-MATPUYHbIE BEPOSTHOCTHBIE MOMEHTHI.
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Introduction

The distinct non-classical approaches are used today in multidimensional
probabilistic modeling, such as matrix and multidimensional-matrix and, to a
lesser extent, tensor and multiway approaches. In this article, the quite minor
analysis of the multidimensional-matrix and tensor approaches is performed in
order to reasonably compare their capabilities in multidimensional
probabilistic modeling.

The matrix and tensor approaches are based on two independent areas of
knowledge: the tensor analysis [1-8] and the matrix analysis [8-12]. The
tensor analysis is developed for the tensors of the arbitrary order. The matrix
analysis is limited to the two-dimensional matrices. The situation in the
generalization of the two-dimensional matrices to the multidimensional case is
as follows: on the one hand, the very well fundamentals of the theory of the
multidimensional matrices there exist [13—15], on the other hand, the searches
for other approaches to its development are known. These approaches assume
the continuation of the development to the mathematical completion, in some
cases [16-19], or lead the theory of the multidimensional matrix into the
tensor analysis, in other cases [20-21].

The notions of a tensor and a matrix are clearly distinguished [8, 9]. It
would be a confusion of concepts to identify a matrix with a tensor [6].
However, the situation is somewhat different in the literature related to the
data analysis. Sometimes, the notion tensor is attracted to the
multidimensional data analysis [20, 21]. So, in [20] it is noted that the
multidimensional matrices and tensors are convenient mathematical tool for
such an analysis, and a tensor is used instead of a multidimensional matrix.
We will call this approach as the tensor approach. The tensor approach is
reduced to accepting a tensor as a multidimensional matrix without taking into
account the definition and properties of a tensor. We find in [21] that tensors
are multidimensional generalizations of matrices. The illegality of such an
approach is noted shortly in [15]. We want to emphasize by this article that the
generalization of the matrix to the multidimensional case should be performed
in the matrix analysis but not in the tensor analysis. The two-dimensional
(usual) matrix should be the natural particular case of the multidimensional
matrix. We shell consider the some questions of the tensor theory and
multidimensional matrix theory and state the relationships between tensors
and multidimensional matrices to achieve our goal.

1. Transformations of the coordinate systems

Tensor is an object in the linear finite-dimensional space. Linear n-
dimensional space is defined by a set of n linearly independent elements
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(vectors) e,,e,,...,e,,. This set is called the basis ¢;, i =12,...,n, of the n-

dimensional space. Each point x in the n-dimensional space is represented in
the following form:

n .
x = x'e, + x%e, +...+x"e, =3 x'e;, (1)
i-1

where x}, x2,...,x" are real numbers which are called the coordinates of the
point x. We will call x as the position vector of the point or simply vector x.
The expression (1) is called the expansion of the vector x by the basis g;. We

will use the term “coordinate system x' with the basis e,” or simple

I 99

“coordinate system X ” along with the term basis ;.

In tensor analysis, the so called Einstein summation convention is used: if
an index is repeated in some term of the expression then the term must be
summed with respect to that index for all admissible values of the index. For
i

. n .
example, x'e; is written instead of > x'e; , and bj =Xj

i=1

e; means the equality

n .
bj == Zixljei f

1=

The tensor definition is inextricably connected with the transformation of
the basis (coordinate system). Let x' be the initial coordinate system with the
initial basis ¢, and x™ be the new coordinate system with the new basis e,;.
The reciprocal bases are introduced along with the initial bases: e' (with the

coordinate system x;) is the reciprocal to the initial basis e, and e*! (with the
coordinate system x,;) is the reciprocal to the new basis e,;. We will call the

basis e' reciprocal to the initial basis e, as the initial reciprocal basis e' and

the basis e*' reciprocal to the new basis e,; as the new reciprocal basis "

The reciprocal bases are the bases which are orthogonal to their caused bases,
I.e. the following equalities hold

i i 11 i:jl -
(ei,ej):éi‘:{o’ i I,j=212,..,n, (2)
* % j 1: *i:*j; L. ..
(e,,e") =38, Jz{o’ vie ], I, j#,xj=12,..,n, (3)
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where (e;,e’), (e.;,e*1) are the dot products of the vectors and §;7, 5,.*1 is
the Kronecker delta.
The notations of the bases and vector coordinates are given in the table.

The notations of the bases and vector coordinates

Initial basis, New basis,
coordinates coordinates
i i . €uis
X' — contravariant #i
. X
coordinates
ol .
Reciprocal basis, ' e”,
coordinates X; — covariant X,
coordinates

The position vector of the point with respect to two bases is given by the
expression

x=e,x" =e;x. (4)
We find from (4) that
xT =" e )x) =ax], (5)
where
a'j=("e). (6)

The equality (5) defines the transformation of the initial coordinate
system x' to the new coordinate system x™ as determined by the bases ¢;,
and e,;. We find the expression (5) by taking the dot product of both sides of

(4) with the new reciprocal basis e*' and taking into account the equality (3):
€™, (eqx™))=(e",(e;x))), (€™, e)x™ = (e e;)x), x" =(e",e;)x".
We also find from the equality &;x' =e,;x") that
x' = (e', e, )X =a'sjx, (7)
where

o' =(e',e,5). (8)
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The equality (7) defines the transformation of the new coordinate system
x™' to the initial coordinate system x'. We find the expression (7) by taking
the dot product of both sides of the equality e;x' =e,;x"! with initial
reciprocal basis e' and taking into account the equality (2):
(e',(ex")) =(e", (e.;x™)), (e',e))x' = (e e, )x7), x' =(e',e,5)x").

It is clear that the transformations o*'j=(e*,e.) (6) and
Oti*j = (ei,e*j) (8) are mutually inverse.

The expressions (5), (6), (7), (8) can be represented in the vector-matrix
form. If one introduces the row-vectors X' =(x} x2,..,x"),

X*T = (x*,x*2,...,x™) and the matrix A" :(}C’;,j):(a*ij) with elements
oc*ij = (e"‘i ,€:) (6), then one gets instead of (5)
X" =A"X, 9)
where
A =055 =" 1) =(E"e))). (10)
If one introduces the matrix A, =(A.; ;)= (Oti*j) with elements
Oti*j = (ei ,€.j) (8) then one gets instead of (7)
X =A X",
where
A=) = (@) = (€' 00)). (11)
It is clear that (A*) ™ = A,, A7t =A%, ie.
AA, =AAN =1, (12)
The property (12) in element form looks like this
i

PV I
OLj Oy =O-
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It is clear, that if A" =(a"j), then A*T =(a;"!), and if A, =(a'sj),
then Al = (oc*ij). The mutually inverse transformations are following: o™ j

and o'sj, a; and o’

2. Transformations of the bases

The following transformation of the initial reciprocal basis e’ to the new
reciprocal basis e*' follows from (6):

e =o*jel. (13)
We get the expression (13) by multiplying the both sides of (6) by e! and
taking into account the equality (2): a™ je! = (" ,e,)e!, a*'jel =e".

The following transformation of the new basis e,; to initial basis e
follows from the equality o;*) = (e;,e*/):

ei :Oti*je*j. (14)
We get the expression (14) by multiplying the both sides of the equality
o'l =(e;,e") by e, ; and taking into account the property (3):

(li*Je*j :(ei,e*J)e*J‘, Oci*Je*j :ei.
We write also the following transformations as the inverse to the
transformations (13), (14) respectively: the transformation of the new

reciprocal basis e*' to the initial reciprocal basis e’ :
e =aljes,
and the transformation of the initial basis e; to the new basis e,;:

e*i = Oy Je (15)

j .

3. Transformations of the vectors. Covariant
and contravariant components

Any vector a in n-dimensional space can be represented by different
expansion, for instance, by the initial reciprocal basis e' and by the new
reciprocal basis e,
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a=ela; =e"a,, (16)

or by the initial basis e, and by the new basis e,;

a=e;al =e4a™. (17)

The components a; of the vector a in the initial reciprocal basis e’ are called
the covariant components of the vector a, and the components a' of the
vector a in the initial basis e; are called the contravariant components of the

vector a.
If we take the dot product of e,; with both sides of (16) noting that

(e*i,e*j):éi*i*j, we find the transformation of the initial reciprocal
components a; to the new reciprocal components e,;, i.e. the transformation
of the covariant components:

. :(e*i,ej)aj :oc*ija (18)

j-
The relationship (18) has the same form as the relationship (15) of the initial
basis e; to the new basis e,;. Thus, the initial reciprocal components a;
transform to the new reciprocal components a,; in the same fashion as the
initial basis vectors e, transform to the new basis vectors e,;, and for this
reason they are called covariant components [5].

Similarly by taking the dot product of both sides of (17) with e*', we get

the transformation of the initial components a' to the new components a*,
I.e. the transformation of the contravariant components:

a =(e"e)al =a"jal. (19)

The transformation (19) has the same form as the transformation (13) of
the initial reciprocal basis e! to the new reciprocal basis e*'. Thus, the initial
components a' transform to the new components a* in the opposite fashion
as the initial basis vectors e; transform to the new basis vectors e,;.

Accordingly, the components a' are called contravariant components of the
vector.
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4. The case of the orthogonal bases

If the initial basis e; is orthogonal, then the initial reciprocal basis e is
the same as the ¢ [5], i.e. e =eg;. If the new basis e,; is orthogonal too, then
the new reciprocal basis e™ is the same as the e, i.e. e* =e,; . In this case,

the elements of the transition from the new coordinate system x* to the initial
coordinate system x' satisfy the equalities (see (8))

alsj =(e'e) = (e.0.5) = (& .e) = (' "), (20)

and the elements of the transition from the initial coordinate system x' to the
new coordinate system x™ satisfy the equalities (see (6))

alj=(e" ) = (eu.8)) = (e, 8)) = (" &) (21)

Note that the elements a'«j (20) and o™ j (21) represent the matrices A,
(11) and A" (10) respectively. Comparing the expressions (20), (21) shows
that A = A". Since A*A, =1 then A A" =1 and AT = A;}. This means that
the matrices A* and A, are orthogonal. The orthogonality property of the
matrix A" in tensor notation looks like this:

O(*ijOC*ik :6j,k' (22)
5. Definition of a tensor

Definition of a tensor [5]. A tensor a of the order p=r+s of the type
(r,s) (r time covariant and s time contravariant) is the geometrical object

which
1) is defined by n""® components a';ll ....... 'j‘s in the initial basis e;,

i =12,...,n, of the real n-dimensional linear space L",
" in the new basis e,;,

------

*i=1,2,...,n, are connected with the components a'j‘ll """ = in the initial basis e

----- r

by the relations

j Ki,...K
areth S oy oty otk (23)

r
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in which oc*ij are elements of the transition from the initial basis e; to the

new basis e,;, and o'k are the elements of the inverse transition from the

initial reciprocal basis e to the new reciprocal basis e*'.

Note that the components a'j‘ll_._ N of a tensor are the functions of the

coordinates of the coordinate system in which they are considered. If a tensor
is considered in the initial coordinate system x' then its components are the

functions of the variables x': a** =a* 'j‘s (x*, x2...,x"). The components
r

Jl ----- Jr Jl !!!!
of the tensor in a new coordinate system x*' are the functions of the variables

XMoot gttt ()i w2 x*") . The definition (23) means that the

equalities (23) hold for all values of the variables x,x2,...,x" provided the

coordinate system transformation.
If we suppose in the definition (23) s=0 then we receive the following
definition of the covariant tensor of the order r:

(24)

Supposing in the definition (23) r =0 give the following definition of the
contravariant tensor of the order s:

s :a*llkl ...a*ls ksakl """ ks . (25)
The separate definition is applied for the order zero tensor [7].

Definition of a tensor of the order zero. A tensor a of the order zero (a
scalar) is the geometrical object which is defined in the initial coordinate

system x' by the scalar function a(x},x?,..,x") and in the new coordinate

system x* by the scalar function a(x*!,x*?,..,x™") connected with the

function a(x},x2,...,x") by the equality a = a for each point of the space.
Definition of the outer product of the tensors. The outer product of two

tensors aiil% """ 'r and bllflllk“’ is the tensor which defined by the following
..... :

expression:
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Definition of the inner product of the tensors. The inner product of two
tensors is a contraction of the outer product with respect to two indices, each
belonging to a component of the tensors.

Example 1. The simple example of the tensor of the order zero is the
Euclidean distance in the Euclidean space with the orthogonal initial basis e,

and the orthogonal new basis e,. Indeed, let Ot x?%,...,x") and

(xt,x'2,....,x"") be two points in pointed space. Euclidean distance between
these two points is defined by the formula (in tensor notation)

dZ2 =(x' =x")(x' =x").

The new coordinates x™ of the points in the new basis e,; are defined as
follows (see (5)):

=a™jx'].

Therefore, we receive in the new coordinate system
df* =(x" = x" N (xT —x"Y = (x] = x T (X = x*) =
=M otk (xd = x' ) (xK = xk).
Since a”ja"« =35, (see (22)) then
d2 =8, (x] =x )X =x*) = (x] -x )X —x*) =df.

We have the equality df* = df, so the Euclidean distance between two points

Is the tensor of the order zero in accordance with the definition of a tensor of
the order zero.

Example 2. The vector is the tensor of the order one. Indeed, the
transformation (18) of the covariant components of a vector is the definition
(24) provided r =1.

Example 3. The simple example of the tensor of the order two is the outer

product of the two vectors. Let (a',...,a") and (b',...,b") be two vectors in

the initial coordinate system x' (with the basis e; ). The quantities a"J =a'b!
are the elements of the so called outer product of these vectors. The new
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components of the vectors in the new basis e,; are defined by the formulae
a =a"ka®, b*! =a*ib'. Then we have the following string:

| kI

a’'b*l =a"™* = a™akaib' = afkatia*h' = akatlia

This expression is the definition (25) of the contravariant tensor of the order
s=2.

6. Multidimensional matrices

Definition of a multidimensional matrix. A multidimensional (p-
dimensional) matrix is a system of numbers or variables a;; i

i, =12,..,n,, aa=12,...,p, located at the points of the p-dimensional space
defined by the coordinates iy, iy,...,i,.
The p-dimensional matrix is denoted as

A= ; ), i,=12..,n,a=12..p, (26)

igsdp,dp /0 T

or A=(a;), where i=(i,ip,..i,) is a multi-index, i,=12,...,n
a=12,..,p.
If n,=n, =..n, =n, then the matrix (26) is called a p-dimensional

matrix of the order n (a hyper-square matrix). In this connection, the matrix
(26) with distinct ny,n,,...n, could be called a hyper-rectangular matrix.

Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a
vector and a two-dimensional matrix is an ordinary matrix in traditional
notation.

Any p -dimensional matrix A= (a; ; ip) can be represented in the form

A=(a5c), where 1=(lj,l5,.., 1), s=(s,5;,.,8;), €=(C,...,C,) are
multi-indexes, k+A+u=p. We will say that the matrix A has (i,A,u)-
structure and denote it A, -

Transpose of a multidimensional matrix. The matrix AT :(a{’i i ) the

-------

elements a{,iz ,,,,, i of which are connected with the elements a; ; ; of the

g

matrix A= (a; ; ip) by the equalities

------

i =4 i, (27)

Il’|2 """ Ip ag o 1t ap
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where ial,|a2,...,| ; is some permutation of the indices il,iz,...,ip is called
the transposed according to the substitution
T= _il""’ .ip
I
matrix A. For example, let
111 11,2 121 122
~ s - ~=
_ _| x 2 y Xy
A—(ai,j,k)— 211 212 221 27272
- Il - -~
7 Bz t
i1 J’k . . T
and T = il Then, in accordance with the formula (27), a;;x =2a j;.
v )il Y -
and
111 112 121 122
x 7y 7
T T X
A =@ k) =] 211 212 221 222
el el —— nl
2 B Xy t

Note, that the Matlab function ipermute.m performs a transpose of a
multidimensional array in accordance with the definition (27).

The some standard substitutions are introduced in the work [15] which
allow us to form various substitutions. They are substitutions of the types
‘onward’, ‘back’, ‘onward-back’.

The substitution on the p indices the lower string of which is formed
from the upper string by the transfer of the r left indices to the right (onward)
is called substitution of the type ‘onward’ and is denoted B, . or simple B, :

I, by e ooy gy e
Bp,FZL. 1 . 2 p r p-r+l -p}’ er (28)
IH—l’ II’+2’ T p? Il’ T II’

The substitution on the p indices the lower string of which is formed

from the upper string by the transfer of the r right indices to the left (back) is
called substitution of the type ‘back’ and is denoted H , . or simple H:
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i]_1 i21 eey iry il’+l’ aney ip
Hor = . : i : , p=>r.
To—rtr Tpors2r ooy lpo 1, oy Dpy

The substitution on the p indices the lower string of which is form from

the upper string by the transfer of the r left indices to the right (onward) and
the s right indices to the left (back) is called substitution of the type ‘onward-
back’ and is denoted B, H:

il’ vy I ’ ey i - ) ey i
BrHS:(_ ! ps _p), p>r+s.
Ip—S+1’ reny Ip’ ey I]_1 ey Ir

Multiplication of two multidimensional matrices. If a p-dimensional
matrix A is represented in the form of A=(a;; ip):(aLS,C), where

......

=1, 1), s=(5,5,-45), C€=(¢,..,C,) are multi-indices,
K+A+u=p, and a gq-dimensional matrix B is represented in the form of
B=(0j j,.. jq):(bc,s,m)’ where  m=(my,...m,) is a multi-index,
A+p+v=qd, then the matrix D =(d,  ,,) is called a (A, ) -folded product of
the matrices A and B, if its elements are defined by the expression

dI,s,m = %al,s,cbc,s,m = ZZ'“zal,s,cbc,s,m .

GG G

The (&) -folded product of the matrices A and B is denoted ** (AB) .
Thus,

DZK’M(AB): (Z a-I,s,cbc,s,m) = (dl,s,m)-

In the case of the (0,0)-folded product we often omit the left upper
indices and write AB instead of %° (AB) .

In the general case ** (AB)="* (BA).

The associative law of multiplication of the multidimensional matrices
holds:

(M (AB) C)="4 (AT (BC)).

The distributive law of multiplication of the multidimensional matrices is
as follows:
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MH(A(B +C))=""(AB)+"*(AC).

Degree of multidimensional matrix. The matrix D="*(AA)="*A? is
called a (A,u)-folded square of the matrix A, and the matrix
D=2 (AMH (A (AA))=*HAX s called a (A, ) -folded k -th degree of the
matrix A. If itis (0,0)-folded k -th degree of the matrix A, then we omit the
left upper indices and write AX instead of “°AX .

Identity multidimensional matrix. The matrix E(A,n) is called a (A,p)-
identity matrix if the equalities

MR (AE (A, w)="H (E(L ) A) = A

are satisfied for any multidimensional matrix A. The matrix E(A,u) is
(A + 2u) -dimensional matrix whose elements are defined by the formula

1, if c=m,
E(k,u)=(ec,s,m):({0 if c;tmj’

C=(CpysCy)s S=(S1,e, 82 ), M=(My,...,m,). (29)

7. Multidimensional-matrix representation of tensor

It follows from (25) that the definition of the contravariant second order
tensor has the form

_>x=i1,>x<i2

3 =o" jla*'z jzah-lz _ (30)

It is convenient to express a second order tensor in form of a matrix [3]. It
allows using the matrix notation in the operations with tensors. Introducing the
matrix A" = (X ;)=(a™j) (10) and the matrices of the second order tensors

*ill

a=(aj1'j2), a=(a *i2) allows us to obtain the following form of the
representation of the definition of the second order tensor (30) [3]:

a=AaA"T. (31)
Indeed, we have the following transformations:

7 ¥ ¥, L S ' P *  odudeg* L T PR B
a - Z 7\'*'11117\'*'21128' o z K"<'1v11a 7\'*'2112 o z k*'lljla 7\'Jz,”"z
JllJZ Jl’J2 Jl JZ
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The last expression has the matrix form (31). Since A* = A%, then the
inverse to the (31) transformation has the following matrix form:

a=A,aAl, (32)

where A, is the matrix A, = (A,; ;) =(a'sj) (11).

The matrix representation is more convenient for the visual perception
and computer calculations since the matrix algebra is very good represented in
all programming systems.

It is noted in [3] that the matrix notation fails for tensors of higher order.
However, this statement is refuted below. We give below the generalization of
the expression (32) for the arbitrary order tensor in the framework of the
theory of the multidimensional matrices. Let us turn for this to the tensor
definition (25) in the case of the arbitrary bases ¢;, e,; and introduce apart the

two-dimensional matrix A”‘z(?&’{yj):(oﬁ‘i i) (10) also the s-dimensional

="'S) of tensors. Then we can write the

definition (25) in compliance with the summation convention in terms of these
matrices:

If we use the summation sign then the last expression takes the following
form:

T . L 3 3 * Ky
a = Z z ek *ls,ksa =
n n
Ky,
= 2 2 Zat kel kol BT (33)

where we introduce the 2s-dimensional matrix
2= (Zay ol itk ) = sk Mt k) (34)

The matrix z (34) is the (0,0)-folded s-th degree of the matrix A" = (A; ;):
z="9(A*)®. On the other hand, we can write the following equation along
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=*l,,...; *l Ky k
a e = X M sl gk AT (35)
If
21, Kyl Kk = Mol Kk (36)

then the expressions (33), (35) are equivalent. Taking into account (34), we
will have instead of (36):

Myl ok, = Moel Mk, (37)

The equality (36) means, that the matrices z and A are connected by
transpose operation, namely

7=A", (38)

|1,k1,|2,k2,...,|s,k5

where TZS:(I | L ke ke K
1, 2..., S’ l, 2..., S

J is the transpose substitution on the 2S

indexes, in which we use the index | instead of the index *1. In rank form this
substitution is defined by following expression:

123,..5S, S+1s+2,..25-12s
2s . (39)
246,..2s, 1, 3, ..25-32s-1
It is follows from (38) that
A=2" = (A" (40)

where T, is substitution inverse to the substitution T, .
Thus, we received the following form for representation the tensor

definition (25):
0,s -1
a0 (ha)= ((A)") a) (41)

where A is the matrix (40), z is defined by the formula (34), A" = (X; ;) is

the matrix (10), T, is the transpose substitution (39), °°(Aa) is the (0,s)-
folded product of the matrices A and a [15].
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The known expression (32) is the particular case of the expression (41)
provided s =2. We can write the following expression instead of (32):

a="2((A"))™ a),

1,2,3,4 1 (1234
where T, = , T, = :
2,4,1,3 31,42
8. Probabilistic applications

Let us prove the theorems related to the probabilistic applications.

The linear transformation of the random vector which reduces its
covariance matrix to the diagonal form is considered in the principal
components method [22]. The following theorem applies to such a
transformation.

Theorem 1. The elements R ; ; of the covariance matrix R; =(R;; ;) of

the random vector &' = (&',...,£") can be considered as the components of
the second order tensor.

Proof. The covariance matrix of the random vector &' = (&*,....E") is
defined in the initial basis ¢; by the expression R, = E(2¢"), where & is the
centered random vector, and E means the mathematical expectation. If we
introduce the linear transformation 1 = A*¢ (9) with the transformation matrix
A" (10), then we get for the covariance matrix of the random vector n:

R, =EMN") = E(AEAE)T )= E(A"EETAT )= ARA"T.
We can see that the covariance matrix is transformed in accordance with the

transformation (31) of the second order tensor. Thus, the elements R;; ; of

the covariance matrix R; = (R ; ;) of the random vector &' = (¢',...,.€") can

be considered as the components of the second order tensor.
The following theorem is more general then theorem 1.

Theorem 2. If éz(gk), k=12,..,n, is the random vector in the n-
dimensional  Euclidean space with the initial basis ¢, and

Vg =E(0’0§5)=(v§1 """ ks) is the s-th order multidimensional-matrix initial

= of the matrix v, can be considered as the components of the s-th
order tensor.
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Proof. Let n=(n"), 1=12,...,n, be the random vector ¢ in the new
basis e,;, A" = (X ;)= (o"'}) be the transformation matrix from initial basis
e; to the new basis e,;, v, = E(®°n") be the initial moment of the order s of
the vector n = (n*') in the new basis e,i- Since n*' = N;,'ké" = oc*'kik , then

4 L Ky ¢ K k
= E([ 2 2 Mty g Mty kg R 6, 6TET 6 SD=
kl:]' kS:1
L n k, ¢ k k
=| 2 2 A Mny kMt E(ETTET? -E70) | =
kl:l kS:l

4 4 Ky,... K 0,s #\S\Tod 0,s
B kzl'-.kzlx*ll,klx*lz,kz gk Vst ET(((AT)T) 0 vs)=""(Avg) (42)
l= S=

We can see that the equality (41) holds. Theorem 2 is proved.
The following theorem defines the structure of the transformation matrix
A of the s-th order initial moment v, in (42) provided the orthogonal

transformation of the random vector.
Theorem 3. If the transition matrix A" =(j;)=(a"j) (10) from the

initial coordinate system x' to the new coordinate system x*' is orthogonal,
then the 2S-dimensional matrix A in tensor definition (41) and in the s-th
order initial moment v transformation (42) is orthogonal too.

Proof. Orthogonality of the matrix A™ = (A; ;) = (o) (10) means that
n * * n * *
2 kM = 2tk j =9
k=1 k=1
where §; ; is Kronecker delta, or in matrix form

AT =(ATA =1,
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where | is identical matrix of the order n. The 2s-dimensionality matrix
A=A IS called (s,0,s)-orthogonal if the following equality holds [22]:

V=25 (AAT=25(ATTA) = E(0,5),
where IT= B, is the transpose substitution at the 2s indices of the type

‘onward’ (28) and E(O,s) is the (0, s)-identical matrix (29) [15].
Let us rewrite (37) using other indices:

* * *
A= (}\‘Jl Jare- Js*j5+lljs+21"vj25)_(kjl’js+l7\’j2!js+2.”}\'js1j25)'
Then
I 7.
A :(}\’ i dzrids i dsanJse2 JZS) (}\‘js+1 Jse2rodoss Jus J2ses Js)
%k * *
_(}\‘js+1yjl7\'js+2,j2 ”.7\'1.251]@)'

Further,

_O’S H _ - - H - - - —_—
V_ (AA )_( Z Z Jl Jooes Jslks+1lks+21"lk25kks+llks+21"’k231Js+1le+2 ----- JZSJ_
I(s+1 =1 k25:

= (le.jz,....js,js+1,js+z,...125 )=

* * * *
[kz Z Jl k 1 ks+2 .”}Ljs’kZSst-*—l’ks-f-l)\‘js+2’ks+2 ”.ijS’kZS }_

s+1 =1 kZS_

*
{kz Z ( Jl s+1 Js+l s+l)( 12 S+2 Js+2 ks+2) (7\' Js k25 ]25!k25 )j:

s+1 =1 kZS:

1’ If'l J ’J J ’ 1] :J )
:((Sjl,jm)(sjz,jw)“'(515,125)):({O Sl B

otherwhise.

=E(0,s).

The proof is completed.
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9. Relationship between a tensor and a multidimensional matrix

Let us list the signs characterizing the relationship between a tensor and a
multidimensional matrix.

1. A tensor is not a matrix; a tensor is a set of scalars represented by an
indexed variable. The work with tensors in the framework of the tensor
analysis is the work with indexed variables, i.e. with scalars but not with
matrix or multidimensional-matrix variables. A tensor (covariant for

a=(a, j ) andis considered as a “hypercomplex number” [9].

2. All of tensor indices are written out in tensor notation explicitly. The
tracking of the indices in tensor expressions is difficult with a large number of
indices. “The writing out of the indices leads to cumbersome formulae with
tensor notation” [20].

3. All of tensor indices run the values 12,...n, where n is the
dimensionality of the space in which the tensor is defined, while the indices of
a multidimensional matrix can run the arbitrary number of values. This means
that a tensor can be represented only by the hyper-square matrix, and it is
impossible to receive a hyper-rectangular matrix provided declaring a tensor
as a matrix.

4. A tensor is the set of functions defined in the linear vector space L".

e; provided the fixed values of the indices j;,..., j; is the some characteristic
of the mutual connections of the components with numbers j;,..., j; of the

vector (x},x2...,x") e L". A multidimensional matrix is not connected with a

specific space. A multidimensional matrix can be a number matrix (constant)
or a function of other multidimensional matrix, and it is impossible to assert in

general case that the element ajf P of the matrix a:(aj1

characteristic of some mutual connections between the components with the
numbers j;',..., j; -

5. The operations of the outer and inner product of the tensors do not
allow realization of the (A, ) -folded product of the multidimensional matrices

provided A #0.

6. It is not possible to represent a mixed (covariant and contravariant)
tensor with a multidimensional matrix, since no way of ordering covariant and
contravariant indices has been established.

......
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7. The multidimensional-matrix notation can be used in tensor analysis,
what was shown by representation of the definition of a covariant tensor in
multidimensional-matrix notation.

8. Any mathematical object should develop in the framework of his
theory: tensor in the framework of tensors, matrix in the framework of
matrices. A multidimensional matrix should generalize the usual (two-
dimensional) matrix inheriting or generalizing the methods of the theory of
usual matrices. A tensor as a multidimensional matrix is not such a
generalization. Tensor as multidimensional matrix transfers the matrix into the
framework of the other theory. The use of the term tensor without taking into
account its properties seems unacceptable.

Conclusion

So, the article analyzes two approaches used in the multidimensional
probabilistic modeling: multidimensional-matrix and tensor approaches. As
the result, the differences and interconnections of these approaches are
revealed. In particular, the multidimensional-matrix interpretation
(multidimensional-matrix representation) of the arbitrary order tensor, which
Is absent in the literature, is obtained. This opens the way for generalization of
tensor concepts to the multidimensional-matrix spaces. The number of
theorems establishing the connections between the multidimensional
probabilistic concepts and tensors are proved. At the same time, the performed
analysis shows the illegality of the formal using a tensor as a multidimensional
matrix.
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