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The analysis of the general concepts both of the tensor and multidimensional-matrix 

approaches in probabilistic modeling is performed and the relationships between the tensor 

and the multidimensional matrix are clarified. The matrix representation of the second order 

tensor definition known in the literature is generalized to the arbitrary order tensors. The 

theorems on the tensor nature of the covariance matrix and the multidimensional matrix of 

the arbitrary order moments of the random vector are proved. The theorem on the 

orthogonality of the transformation matrix of the arbitrary order multidimensional-matrix 

moment of the random vector provided the orthogonality of the random vector 

transformation is proved. 
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Introduction 

The distinct non-classical approaches are used today in multidimensional 

probabilistic modeling, such as matrix and multidimensional-matrix and, to a 

lesser extent, tensor and multiway approaches. In this article, the quite minor 

analysis of the multidimensional-matrix and tensor approaches is performed in 

order to reasonably compare their capabilities in multidimensional 

probabilistic modeling.  

The matrix and tensor approaches are based on two independent areas of 

knowledge: the tensor analysis [1–8] and the matrix analysis [8–12]. The 

tensor analysis is developed for the tensors of the arbitrary order. The matrix 

analysis is limited to the two-dimensional matrices. The situation in the 

generalization of the two-dimensional matrices to the multidimensional case is 

as follows: on the one hand, the very well fundamentals of the theory of the 

multidimensional matrices there exist [13–15], on the other hand, the searches 

for other approaches to its development are known. These approaches assume 

the continuation of the development to the mathematical completion, in some 

cases [16–19], or lead the theory of the multidimensional matrix into the 

tensor analysis, in other cases [20–21]. 

The notions of a tensor and a matrix are clearly distinguished [8, 9]. It 

would be a confusion of concepts to identify a matrix with a tensor [6]. 

However, the situation is somewhat different in the literature related to the 

data analysis. Sometimes, the notion tensor is attracted to the 

multidimensional data analysis [20, 21]. So, in [20] it is noted that the 

multidimensional matrices and tensors are convenient mathematical tool for 

such an analysis, and a tensor is used instead of a multidimensional matrix. 

We will call this approach as the tensor approach. The tensor approach is 

reduced to accepting a tensor as a multidimensional matrix without taking into 

account the definition and properties of a tensor. We find in [21] that tensors 

are multidimensional generalizations of matrices. The illegality of such an 

approach is noted shortly in [15]. We want to emphasize by this article that the 

generalization of the matrix to the multidimensional case should be performed 

in the matrix analysis but not in the tensor analysis. The two-dimensional 

(usual) matrix should be the natural particular case of the multidimensional 

matrix. We shell consider the some questions of the tensor theory and 

multidimensional matrix theory and state the relationships between tensors 

and multidimensional matrices to achieve our goal. 

1. Transformations of the coordinate systems 

Tensor is an object in the linear finite-dimensional space. Linear n -

dimensional space is defined by a set of n  linearly independent elements 



160 

(vectors) neee ,...,, 22 . This set is called the basis ie , ni ,...,2,1 , of the n -

dimensional space. Each point x  in the n -dimensional space is represented in 

the following form: 
 





n

i
i

i
n

n exexexexx
1

2
2

1
1 ... ,                               (1) 

 

where 
nxxx ,...,, 21
 are real numbers which are called the coordinates of the 

point x . We will call x  as the position vector of the point or simply vector x . 

The expression (1) is called the expansion of the vector x  by the basis ie . We 

will use the term “coordinate system ix  with the basis ie ” or simple 

“coordinate system ix ” along with the term basis ie . 

In tensor analysis, the so called Einstein summation convention is used: if 

an index is repeated in some term of the expression then the term must be 

summed with respect to that index for all admissible values of the index. For 

example, i
iex  is written instead of 


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i
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1
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The tensor definition is inextricably connected with the transformation of 

the basis (coordinate system). Let ix  be the initial coordinate system with the 

initial basis ie  and ix  be the new coordinate system with the new basis ie . 

The reciprocal bases are introduced along with the initial bases: ie  (with the 

coordinate system ix ) is the reciprocal to the initial basis ie  and ie  (with the 

coordinate system ix ) is the reciprocal to the new basis ie . We will call the 

basis ie  reciprocal to the initial basis ie  as the initial reciprocal basis ie  and 

the basis ie  reciprocal to the new basis ie  as the new reciprocal basis ie . 

The reciprocal bases are the bases which are orthogonal to their caused bases, 

i.e. the following equalities hold 
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where ),( j
i ee , ),( j

i ee 
  are the dot products of the vectors and 

j
i , 

j
i


  is 

the Kronecker delta. 

The notations of the bases and vector coordinates are given in the table. 

 
The notations of the bases and vector coordinates 

 
Initial basis,  

coordinates 

New basis,  

coordinates 

 
ie , 

ix  – contravariant  

coordinates 

ie ,  

ix  

Reciprocal basis,  

coordinates 

ie ,  

ix – covariant  

coordinates 

ie ,  

ix  

 

The position vector of the point with respect to two bases is given by the 

expression 
 

j
j

i
i xexex  
 .                                                (4) 

 

We find from (4) that  

j
j

ij
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ii xxeex   ),( ,                                       (5) 

where 
 

),( j
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j
i ee  .                                                 (6) 

 

The equality (5) defines the transformation of the initial coordinate 

system ix  to the new coordinate system ix  as determined by the bases ie , 

and ie . We find the expression (5) by taking the dot product of both sides of 

(4) with the new reciprocal basis ie  and taking into account the equality (3): 
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where  
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The equality (7) defines the transformation of the new coordinate system 
ix  to the initial coordinate system 

ix . We find the expression (7) by taking 

the dot product of both sides of the equality 
j

j
i

i xexe 
  with initial 

reciprocal basis ie  and taking into account the equality (2): 

))(,())(,( j
j

ii
i

i xeexee 
 , 

j
j

ii
i

i xeexee 
 ),(),( , 

j
j

ii xeex 
 ),( . 

It is clear that the transformations ),( j
i

j
i ee   (6) and 

),( j
i

j
i ee    (8) are mutually inverse. 

The expressions (5), (6), (7), (8) can be represented in the vector-matrix 

form. If one introduces the row-vectors ),...,,( 21 nT xxxX  , 

),...,,( 21 nT xxxX    and the matrix )()( , j
i

ji
   with elements 

),( j
i

j
i ee   (6), then one gets instead of (5) 

 

XX   ,                                              (9) 
 

where 
 

)),(()()( , j
i

j
i

ji ee  .                        (10) 

 

If one introduces the matrix )()( ,, j
i

ji    with elements 

),( j
i

j
i ee    (8) then one gets instead of (7) 

 


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j
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It is clear that 
  1)( , 


  1

, i.e. 
 

I 
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
.                                        (12) 

 

The property (12) in element form looks like this 
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j
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i
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It is clear, that if )( j
i  , then )(

j
i

T   , and if )( j
i
  , 

then )(
j

i
T

  . The mutually inverse transformations are following: j
i  

and j
i
 , 

j
i


  and 
j

i . 

2. Transformations of the bases 

The following transformation of the initial reciprocal basis je  to the new 

reciprocal basis ie  follows from (6):  
 

j
j

ii ee   .                                                (13) 
 

We get the expression (13) by multiplying the both sides of (6) by je  and 

taking into account the equality (2): 
j

j
ij

j
i eeee ),(   , ij

j
i ee   . 

The following transformation of the new basis ie  to initial basis ie  

follows from the equality ),( j
i

j
i ee 

 : 

j
j

ii ee 


 .                                                (14) 

 

We get the expression (14) by multiplying the both sides of the equality 

),( j
i

j
i ee 

  by je  and taking into account the property (3): 

j
j

ij
j

i eeee 





 ),( , ij
j

i ee  


. 

We write also the following transformations as the inverse to the 

transformations (13), (14) respectively: the transformation of the new 

reciprocal basis ie  to the initial reciprocal basis je : 
 

j
j

ii ee 
 , 

 

and the transformation of the initial basis ie  to the new basis ie : 
 

j
j

ii ee   .                                                (15) 

3. Transformations of the vectors. Covariant  

and contravariant components 

Any vector a  in n -dimensional space can be represented by different 

expansion, for instance, by the initial reciprocal basis 
ie  and by the new 

reciprocal basis 
ie , 
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i
i

j
j aeaea 

 ,                                       (16) 

 

or by the initial basis ie  and by the new basis ie  
 

i
i

j
j aeaea 

 .                                      (17) 

 

The components ia  of the vector a  in the initial reciprocal basis ie  are called 

the covariant components of the vector a , and the components ia  of the 

vector a  in the initial basis ie  are called the contravariant components of the 

vector a . 

If we take the dot product of ie  with both sides of (16) noting that 

j
i

j
i ee





 ),( , we find the transformation of the initial reciprocal 

components ia  to the new reciprocal components ie , i.e. the transformation 

of the covariant components: 

j
j

ij
j

ii aaeea   ),( .                             (18) 

 

The relationship (18) has the same form as the relationship (15) of the initial 

basis ie  to the new basis ie . Thus, the initial reciprocal components ia  

transform to the new reciprocal components ia  in the same fashion as the 

initial basis vectors ie  transform to the new basis vectors ie , and for this 

reason they are called covariant components [5].  

Similarly by taking the dot product of both sides of (17) with ie , we get 

the transformation of the initial components ia  to the new components ia , 

i.e. the transformation of the contravariant components: 
 

j
j

ij
j

ii aaeea   ),( .                            (19) 

 

The transformation (19) has the same form as the transformation (13) of 

the initial reciprocal basis je  to the new reciprocal basis ie . Thus, the initial 

components ia  transform to the new components ia  in the opposite fashion  

as the initial basis vectors ie  transform to the new basis vectors ie . 

Accordingly, the components ia  are called contravariant components of the 

vector. 
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4. The case of the orthogonal bases 

If the initial basis ie  is orthogonal, then the initial reciprocal basis ie  is 

the same as the ie  [5], i.e. i
i ee  . If the new basis ie  is orthogonal too, then 

the new reciprocal basis ie  is the same as the ie , i.e. i
i ee 
  . In this case, 

the elements of the transition from the new coordinate system ix  to the initial 

coordinate system ix  satisfy the equalities (see (8))  

),(),(),(),( jij
ijij

i
j

i eeeeeeee 
  ,                   (20) 

and the elements of the transition from the initial coordinate system ix  to the 

new coordinate system ix  satisfy the equalities (see (6))  

),(),(),(),( jij
ijij

i
j

i eeeeeeee 


  .              (21) 

Note that the elements j
i
  (20) and j

i  (21) represent the matrices   

(11) and   (10) respectively. Comparing the expressions (20), (21) shows 

that T


  . Since I 
  then IT    and 1

 T . This means that 

the matrices   and   are orthogonal. The orthogonality property of the 

matrix   in tensor notation looks like this: 
 

kjk
i

j
i

, 
.                                         (22) 

5. Definition of a tensor 

Definition of a tensor [5]. A tensor a  of the order srp   of the type 

),( sr  ( r  time covariant and s  time contravariant) is the geometrical object 

which  

1) is defined by 
srn 
 components s

r
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a
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,...,
1

1
 in the initial basis ie , 

ni ,...,2,1 , of the real n -dimensional linear space nL ,  

2) has such a property that its components s

r
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a
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1

1
 in the new basis ie , 

ni ,...,2,1 , are connected with the components s

r
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a
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1
 in the initial basis ie  

by the relations 
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r
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1
1
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1

1

1







  ,                   (23) 
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in which 
j

i  are elements of the transition from the initial basis ie  to the 

new basis ie , and k
l  are the elements of the inverse transition from the 

initial reciprocal basis je  to the new reciprocal basis ie . 

Note that the components s

r

kk

jj
a

,...,

,...,
1

1
 of a tensor are the functions of the 

coordinates of the coordinate system in which they are considered. If a tensor 

is considered in the initial coordinate system ix  then its components are the 

functions of the variables ix : )...,,( 21,...,

,...,

,...,

,...,
1

1

1

1

nkk

jj

kk

jj
xxxaa s

r

s

r
 . The components 

of the tensor in a new coordinate system ix  are the functions of the variables 
ix : ),...,,( 2,...,

,...,

,...,

,...,
1

1

1

1

nill

ii

ll

ii
xxxaa s

r

s

r








 . The definition (23) means that the 

equalities (23) hold for all values of the variables 
nxxx ,...,, 21
 provided the 

coordinate system transformation.  

If we suppose in the definition (23) 0s  then we receive the following 

definition of the covariant tensor of the order r :  

r

r

rr jj
j

i
j

iii aa ,...,,..., 1

1

11    .                      (24) 

 

Supposing in the definition (23) 0r  give the following definition of the 

contravariant tensor of the order s : 
 

s
s

ss kk
k

l
k

lll
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,...,,..., 1
1

11 
  .                     (25) 

The separate definition is applied for the order zero tensor [7]. 

Definition of a tensor of the order zero. A tensor a  of the order zero (a 

scalar) is the geometrical object which is defined in the initial coordinate 

system ix  by the scalar function ),...,,( 21 nxxxa  and in the new coordinate 

system ix  by the scalar function ),...,,( 21 nxxxa   connected with the 

function ),...,,( 21 nxxxa  by the equality aa   for each point of the space.  

Definition of the outer product of the tensors. The outer product of two 

tensors r

s

ii

ii
a

,...,

,...,
1

1   and p

q

kk

kk
b

,...,

,...,
1

1 
 is the tensor which defined by the following 

expression: 
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,...,,,...,
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 . 

 



167 

Definition of the inner product of the tensors. The inner product of two 

tensors is a contraction of the outer product with respect to two indices, each 

belonging to a component of the tensors. 

Example 1. The simple example of the tensor of the order zero is the 

Euclidean distance in the Euclidean space with the orthogonal initial basis ie  

and the orthogonal new basis ie . Indeed, let ),...,,( 21 nxxx  and 

),...,,( 21 nxxx   be two points in pointed space. Euclidean distance between 

these two points is defined by the formula (in tensor notation) 
 

))((2 iiii
x xxxxd  . 

 

The new coordinates ix  of the points in the new basis ie  are defined as 

follows (see (5)): 
 

j
j

ii xx   , j
j

ii xx   . 
 

Therefore, we receive in the new coordinate system 
 

 
 )()())((2 kk

k
ijj

j
iiiii

x
xxxxxxxxd  

))(( kxxxx kjj
k

i
j

i   . 

 

Since kjk
i

j
i

,   (see (22)) then 

 

2
,

2 ))(())(( x
kkjjkkjj

kjx
dxxxxxxxxd  . 

 

We have the equality 
22
xx

dd  , so the Euclidean distance between two points 

is the tensor of the order zero in accordance with the definition of a tensor of 

the order zero. 

Example 2. The vector is the tensor of the order one. Indeed, the 

transformation (18) of the covariant components of a vector is the definition 

(24) provided 1r . 

Example 3. The simple example of the tensor of the order two is the outer 

product of the two vectors. Let ),...,( 1 naa  and ),...,( 1 nbb  be two vectors in 

the initial coordinate system ix  (with the basis ie ). The quantities jiji baa ,  

are the elements of the so called outer product of these vectors. The new 
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components of the vectors in the new basis ie  are defined by the formulae 

k
k

ii aa   , 
l

l
jj bb   . Then we have the following string: 

 

lk
l

j
k

ilk
l

j
k

il
l

jk
k

ijiji ababaaba ,,   . 
 

This expression is the definition (25) of the contravariant tensor of the order 

2s . 

6. Multidimensional matrices 

Definition of a multidimensional matrix. A multidimensional ( p -

dimensional) matrix is a system of numbers or variables 
piiia ,...,, 21
, 

  ni ,...,2,1 , p,...,2,1 , located at the points of the p -dimensional space 

defined by the coordinates piii ,...,, 21 .  

The p -dimensional matrix is denoted as 
 

)( ,...,, 21 piiiaA  ,   ni ,...,2,1 , p,...,2,1 ,                        (26) 

 

or )( iaA  , where ),...,,( 21 piiii   is a multi-index,   ni ,...,2,1 , 

p,...,2,1 . 

If nnnn p  ...21 , then the matrix (26) is called a p -dimensional 

matrix of the order n  (a hyper-square matrix). In this connection, the matrix 

(26) with distinct pnnn ,..., 21  could be called a hyper-rectangular matrix. 

Thus, a zero-dimensional matrix is a scalar, a one-dimensional matrix is a 

vector and a two-dimensional matrix is an ordinary matrix in traditional 

notation. 

Any p -dimensional matrix )( ,...,, 21 piiiaA   can be represented in the form 

)( ,, cslaA  , where ),...,,( 21  llll , ),...,,( 21  ssss , ),...,( 1  ccc  are 

multi-indexes, p . We will say that the matrix A  has ),,(  -

structure and denote it ),,( A . 

Transpose of a multidimensional matrix. The matrix )( ,...,, 21

T
iii

T

p
aA   the 

elements 
T

iii p
a ,...,, 21

 of which are connected with the elements 
piiia ,...,, 21
 of the 

matrix )( ,...,, 21 piiiaA   by the equalities 

 

pp iii
T

iii aa


 ,...,,,...,,
2121

,                                   (27) 
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where 
p

iii  ,...,,
21

 is some permutation of the indices piii ,...,, 21  is called 

the transposed according to the substitution 
 
















 p
i

i

i

i
T

p

,...,

,...,

1

1
 

 

matrix A . For example, let 
 



































2,2,2

2,2,1

1,2,2

1,2,1

2,1,2

2,1,1

1,1,2

1,1,1

,,
2

7

)(

t

xy

z

yxaA kji  

 

and 









ijk

kji
T

,,

,,
. Then, in accordance with the formula (27), ijk

T
kji aa ,,,,  , 

and 
 


































 2,2,2

2,2,1

1,2,2

1,2,1

2,1,2

2,1,1

1,1,2

1,1,1

,,
7

2

)(

t

z

xy

yxaA T
kji

T . 

 

Note, that the Matlab function ipermute.m performs a transpose of a 

multidimensional array in accordance with the definition (27). 

The some standard substitutions are introduced in the work [15] which 

allow us to form various substitutions. They are substitutions of the types 

‘onward’, ‘back’, ‘onward-back’.  

The substitution on the p  indices the lower string of which is formed 

from the upper string by the transfer of the r  left indices to the right (onward) 

is called substitution of the type ‘onward’ and is denoted rpB ,  or simple rB :  

 


















 r

prp

p

rp

rr
rp

i

i

i

i

i

i

i

i

i

i
B

...,

...,

,

,

,

,

...,

...,

,

,

,

,

1

1

2

2

1

1
, , rp  .       (28) 

 

The substitution on the p  indices the lower string of which is formed 

from the upper string by the transfer of the r  right indices to the left (back) is 

called substitution of the type ‘back’ and is denoted rpH ,  or simple rH : 
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


















 rp

pr

p

r

rprp
rp i

i

i

i

i

i

i

i

i

i
H

...,

...,

,

,

,

,

...,

...,

,

,

,

,

1

1

2

2

1

1

, , rp  . 

 

The substitution on the p  indices the lower string of which is form from 

the upper string by the transfer of the r  left indices to the right (onward) and 

the s  right indices to the left (back) is called substitution of the type ‘onward-

back’ and is denoted sr HB : 


















 r

psp

p

r

sp
sr

i

i

i

i

i

i

i

i
HB

...,

...,

,

,

...,

...,

,

,

...,

...,

,

,

1

1

1

1
, srp  . 

 

Multiplication of two multidimensional matrices. If a p -dimensional 

matrix A  is represented in the form of )()( ,,,...,, 21 csliii aaA
p
 , where 

),...,,( 21  llll , ),...,,( 21  ssss , ),...,( 1  ccc  are multi-indices, 

p , and a q -dimensional matrix B  is represented in the form of 

)()( ,,,...,, 21 mscjjj bbB
q
 , where ),...,( 1  mmm  is a multi-index, 

q , then the matrix )( ,, msldD   is called a ),(  -folded product of 

the matrices A  and B , if its elements are defined by the expression 
 

 



1 2

,,,,,,,,,,
c c c

msccsl
c

msccslmsl babad  . 

 

The ),(  -folded product of the matrices A  and B  is denoted )(, AB . 

Thus, 
 

)()()( ,,,,,,
,

msl
c

msccsl dbaABD  


. 

 

In the case of the )0,0( -folded product we often omit the left upper 

indices and write AB  instead of )(0,0 AB . 

In the general case )()( ,, BAAB   . 

The associative law of multiplication of the multidimensional matrices 

holds: 
 

))(())(( ,,,, BCACAB   . 
 

The distributive law of multiplication of the multidimensional matrices is 

as follows: 
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)()())(( ,,, CAABCBA   . 
 

Degree of multidimensional matrix. The matrix 2,, )( AAAD    is 

called a ),(  -folded square of the matrix A , and the matrix 
kAAAAAD   ,,,, )))(((   is called a ),(  -folded k -th degree of the 

matrix A . If it is )0,0( -folded k -th degree of the matrix A , then we omit the 

left upper indices and write kA  instead of kA0,0 . 

Identity multidimensional matrix. The matrix ),( E  is called a ),(  -

identity matrix if the equalities 
 

AAEAE   )),(()),(( ,,  
 

are satisfied for any multidimensional matrix A . The matrix ),( E  is 

)2(  -dimensional matrix whose elements are defined by the formula 
 
























mcif

mcif
eE msc

,0

,,1
)(),( ,, , 

),...,( 1  ccc , ),...,( 1  sss , ),...,( 1  mmm .            (29) 

 

7. Multidimensional-matrix representation of tensor 
 

It follows from (25) that the definition of the contravariant second order 

tensor has the form 
 

21
2

2
1

121 ,, jj
j

i
j

iii
aa


 .                          (30) 

 

It is convenient to express a second order tensor in form of a matrix [3]. It 

allows using the matrix notation in the operations with tensors. Introducing the 

matrix )()( , j
i

ji
   (10) and the matrices of the second order tensors 

)( 21, jj
aa  , )( 21, ii

aa


  allows us to obtain the following form of the 

representation of the definition of the second order tensor (30) [3]: 
 

Taa   .                                               (31) 
 

Indeed, we have the following transformations: 
 























21

22

21

11

21

22

21

11

21

21

2211

21

,
,

,
,

,
,

,
,

,

,
,,

,

jj

T
ij

jj
ji

jj
ji

jj
ji

jj

jj
jiji

ii
aaaa  
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The last expression has the matrix form (31). Since 1


  , then the 

inverse to the (31) transformation has the following matrix form: 
 

Taa   ,                                              (32) 
 

where   is the matrix )()( ,, j
i

ji    (11). 

The matrix representation is more convenient for the visual perception 

and computer calculations since the matrix algebra is very good represented in 

all programming systems.  

It is noted in [3] that the matrix notation fails for tensors of higher order. 

However, this statement is refuted below. We give below the generalization of 

the expression (32) for the arbitrary order tensor in the framework of the 

theory of the multidimensional matrices. Let us turn for this to the tensor 

definition (25) in the case of the arbitrary bases ie , ie  and introduce apart the 

two-dimensional matrix )()( , j
i

ji
   (10) also the s -dimensional 

matrices )(
,...,1 skk

aa  , )(
,...,1 sll

aa


  of tensors. Then we can write the 

definition (25) in compliance with the summation convention in terms of these 

matrices: 
 

s

ss

s kk
klkl

ll
aa

,...,
,,

,..., 1

11

1 






  . 

 

If we use the summation sign then the last expression takes the following 

form: 
 

  
 








n

k

n

k

kk
klkl

ll

s

s

ss

s aa
1 1

,...,
,,

,...,

1

1

11

1   

 
 


n

k

n

k

kk
klklkl

s

s

ss
az

1 1

,...,
,...,,,,

1

1

2211
 ,                            (33) 

where we introduce the s2 -dimensional matrix 
 

)()( ,,,...,,,, 112211





 

ssss klklklklklzz  .                            (34) 

 

The matrix z  (34) is the )0,0( -folded s -th degree of the matrix )( ,
  ji : 

sz )(0,0  . On the other hand, we can write the following equation along 

with the equation (33) by introducing the matrix )( ,...,,,..., 11 ss kkll  : 
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 
 





n

k

n

k

kk
kkll

ll

s

s

ss

s aa
1 1

,...,
,...,,,...,

,...,

1

1

11

1  .                         (35) 

If  

ssss kkllklklklz ,...,,,...,,...,,,, 112211                                    (36) 

 

then the expressions (33), (35) are equivalent. Taking into account (34), we 

will have instead of (36): 
 





 

ssss klklkkll ,,,...,,,..., 1111
 .                                (37) 

 

The equality (36) means, that the matrices z  and   are connected by 

transpose operation, namely 
 

sT
z 2 ,                                                 (38) 

 

where 









ss

ss
s

kkklll

klklkl
T

...,,,...,,

,,...,,,,

2121

2211
2  is the transpose substitution on the s2  

indexes, in which we use the index l  instead of the index l . In rank form this 

substitution is defined by following expression: 
 















12,32...,,3,1,2,...,6,4,2

2,12,...,2,1,,...,3,2,1
2

sss

sssss
T s .                      (39) 

 

It is follows from (38) that 
 

1
2

1
2 ))((


 ss TsT

z ,                                 (40) 

 

where 1

2



sT  is substitution inverse to the substitution sT2 . 

Thus, we received the following form for representation the tensor 

definition (25):  
 

 aaa sTs
s

s
1

2))(()(
,0

,0


 ,                            (41) 
 

where   is the matrix (40), z  is defined by the formula (34), )( ,
  ji  is 

the matrix (10), sT2  is the transpose substitution (39), )(,0 as   is the ),0( s -

folded product of the matrices   and a  [15]. 
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The known expression (32) is the particular case of the expression (41) 

provided 2s . We can write the following expression instead of (32): 
 

)))(((
1

422,0 aa
T 

 , 
 

where 









3,1,4,2

4,3,2,1
4T , 










2,4,1,3

4,3,2,11
4T . 

8. Probabilistic applications 

Let us prove the theorems related to the probabilistic applications. 

The linear transformation of the random vector which reduces its 

covariance matrix to the diagonal form is considered in the principal 

components method [22]. The following theorem applies to such a 

transformation. 

Theorem 1. The elements jiR ,,  of the covariance matrix )( ,, jiRR    of 

the random vector ),...,( 1 nT   can be considered as the components of 

the second order tensor. 

Proof. The covariance matrix of the random vector ),...,( 1 nT   is 

defined in the initial basis ie  by the expression )( TER 
 , where   is the 

centered random vector, and E  means the mathematical expectation. If we 

introduce the linear transformation    (9) with the transformation matrix 
  (10), then we get for the covariance matrix of the random vector : 

 

    TTTTT REEER 



   )()( . 

 

We can see that the covariance matrix is transformed in accordance with the 

transformation (31) of the second order tensor. Thus, the elements jiR ,,  of 

the covariance matrix )( ,, jiRR    of the random vector ),...,( 1 nT   can 

be considered as the components of the second order tensor. 

The following theorem is more general then theorem 1. 

Theorem 2. If )( k , nk ,...,2,1 , is the random vector in the n -

dimensional Euclidean space with the initial basis ie , and 

)()(
,...,0,0 1 skk

s
s

s E   is the s -th order multidimensional-matrix initial 

moment of the vector   [15] ( s -dimensional matrix), then the elements 

skk
s

,...,1  of the matrix s  can be considered as the components of the s -th 

order tensor. 
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Proof. Let )( l , nl ,...,2,1 , be the random vector   in the new 

basis ie , )()( , j
i

ji
   be the transformation matrix from initial basis 

ie  to the new basis ie , )( 0,0 r
r E   be the initial moment of the order s  of 

the vector )( l  in the new basis ie . Since 
k

k
lk

kl
l  




, , then  

 





























  

 



n

k

n

k

k
kl

k
kl

k
kl

ll
s

s
s

s

s

ss

s EE
1 1

,,,
,...,0,0

1

2

22

1

11

1 )()( 

 





























  

 


n

k

n

k

kkk
klklkl

s

s

ss
E

1 1
,,,

1

21

2211
  

 















  

 


n

k

n

k

kkk
klklkl

s

s

ss
E

1 1
,,,

1

21

2211
)(   

 

)()))((( ,0,0

1 1

,...,
,,,

1
2

1

1

2211 s
s

s
Tss

n

k

n

k

kk
sklklkl

s

s

s

ss




















 
   .(42) 

 

We can see that the equality (41) holds. Theorem 2 is proved. 

The following theorem defines the structure of the transformation matrix 

  of the s -th order initial moment s  in (42) provided the orthogonal 

transformation of the random vector. 

Theorem 3. If the transition matrix )()( , j
i

ji
   (10) from the 

initial coordinate system ix  to the new coordinate system ix  is orthogonal, 

then the s2 -dimensional matrix   in tensor definition (41) and in the s -th 

order initial moment s  transformation (42) is orthogonal too.  

Proof. Orthogonality of the matrix )()( , j
i

ji
   (10) means that  

 

ji

n

k
jkik

n

k
kjki ,

1
,,

1
,,  







 , 

 

where ji,  is Kronecker delta, or in matrix form 

 

ITT   )()( , 
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where I  is identical matrix of the order n . The s2 -dimensionality matrix 

),0,( ss  is called ),0,( ss -orthogonal if the following equality holds [22]: 

),0()()( ,0,0 sEV ss   , 

 

where ssB ,2  is the transpose substitution at the s2  indices of the type 

‘onward’ (28) and ),0( sE  is the ),0( s -identical matrix (29) [15].  

Let us rewrite (37) using other indices: 
 

)()(
2221122121 ,,,,..,,,,...,,

 
 ssssssss jjjjjjjjjjjj  . 

 

Then 
 




 )()( ,...,,,,..,,,..,,.,,...,,
2122122121 ssssssss jjjjjjjjjjjj  

 

)( ,,, 22211

 
 ssss jjjjjj  . 

 

Further, 
 















  

 







n

k

n

k
jjjkkkkkkjjj

s

s s

ssssssssss
V

1 1
,...,,,,..,,,..,,,,...,,

,0

1 2

22122122121
)( 

 
 ssss jjjjjjv

22121 ,..,,,,...,,  
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The proof is completed. 
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9. Relationship between a tensor and a multidimensional matrix 

Let us list the signs characterizing the relationship between a tensor and a 

multidimensional matrix. 

1. A tensor is not a matrix; a tensor is a set of scalars represented by an 

indexed variable. The work with tensors in the framework of the tensor 

analysis is the work with indexed variables, i.e. with scalars but not with 

matrix or multidimensional-matrix variables. A tensor (covariant for 

simplicity) is denoted 
riia ,...,1
, while a multidimensional matrix is denoted 

)( ,...,1 riiaa   and is considered as a “hypercomplex number” [9].  

2. All of tensor indices are written out in tensor notation explicitly. The 

tracking of the indices in tensor expressions is difficult with a large number of 

indices. “The writing out of the indices leads to cumbersome formulae with 

tensor notation” [20]. 

3. All of tensor indices run the values n,...,2,1 , where n  is the 

dimensionality of the space in which the tensor is defined, while the indices of 

a multidimensional matrix can run the arbitrary number of values. This means 

that a tensor can be represented only by the hyper-square matrix, and it is 

impossible to receive a hyper-rectangular matrix provided declaring a tensor 

as a matrix.  

4. A tensor is the set of functions defined in the linear vector space nL . 

Its component )...,,( 21

,...,1

n

jj
xxxa

r
  in the coordinate system ix  with the basis 

ie  provided the fixed values of the indices 
rjj ,...,1  is the some characteristic 

of the mutual connections of the components with numbers 
rjj ,...,1  of the 

vector nn Lxxx )...,,( 21 . A multidimensional matrix is not connected with a 

specific space. A multidimensional matrix can be a number matrix (constant) 

or a function of other multidimensional matrix, and it is impossible to assert in 

general case that the element 
rjj

a
,...,1

 of the matrix )( ,...,1 rjjaa   is a 

characteristic of some mutual connections between the components with the 

numbers 
rjj ,...,1 .  

5. The operations of the outer and inner product of the tensors do not 

allow realization of the ),(  -folded product of the multidimensional matrices 

provided 0 .  

6. It is not possible to represent a mixed (covariant and contravariant) 

tensor with a multidimensional matrix, since no way of ordering covariant and 

contravariant indices has been established. 
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7. The multidimensional-matrix notation can be used in tensor analysis, 

what was shown by representation of the definition of a covariant tensor in 

multidimensional-matrix notation.  

8. Any mathematical object should develop in the framework of his 

theory: tensor in the framework of tensors, matrix in the framework of 

matrices. A multidimensional matrix should generalize the usual (two-

dimensional) matrix inheriting or generalizing the methods of the theory of 

usual matrices. A tensor as a multidimensional matrix is not such a 

generalization. Tensor as multidimensional matrix transfers the matrix into the 

framework of the other theory. The use of the term tensor without taking into 

account its properties seems unacceptable. 
 

Conclusion 

So, the article analyzes two approaches used in the multidimensional 

probabilistic modeling: multidimensional-matrix and tensor approaches. As 

the result, the differences and interconnections of these approaches are 

revealed. In particular, the multidimensional-matrix interpretation 

(multidimensional-matrix representation) of the arbitrary order tensor, which 

is absent in the literature, is obtained. This opens the way for generalization of 

tensor concepts to the multidimensional-matrix spaces. The number of 

theorems establishing the connections between the multidimensional 

probabilistic concepts and tensors are proved. At the same time, the performed 

analysis shows the illegality of the formal using a tensor as a multidimensional 

matrix. 
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