ДИНАМИЧЕСКИЙ СДВИГ ЧАСТОТЫ ИЗЛУЧЕНИЯ КВАНТОВОРАЗМЕРНЫХ ГЕТЕРОЛАЗЕРОВ ПРИ МОДУЛЯЦИИ

Б. Ф. Кунцевич, В. К. Кононенко

Институт физики им. Б. И. Степанова НАН Беларуси, Минск

Полупроводниковые лазеры (ПЛ) с узкой спектральной линией излучения необходимы для систем волоконно-оптической передачи информации, метрологии, спектроскопии высокого разрешения и т. д. Поэтому к настоящему времени разработаны так называемые динамически одночастотные (ДО) ПЛ, которые устойчиво работают в режиме генерации одной продольной моды даже при высокочастотной модуляции тока накачки [1]. Известно также, что в ДО ПЛ с модуляцией тока накачки во время высвечивания импульсов происходит изменение "мгновенной" частоты излучения, называемое иногда свипированием, девиацией или динамическим сдвигом.

Данная работа посвящена исследованию путем численного моделирования влияния перестройки частоты излучения в пределах полосы усиления и частоты модуляции тока на динамику генерации и величину свипирования частоты излучения ДО ПЛ.

Для описания динамики генерации ДО ПЛ с мгновенной частотой излучения $v_g(t)$ использованы стандартные скоростные уравнения для плотности фотонов в резонаторе S и концентрации неравновесных носителей тока N. Использовалась двухзонная модель активной среды в предположении переходов без правила отбора между основными подзонами. Детали подхода и параметры можно найти в [2].

Модуляция тока накачки задавалась в форме $j=j_{\rm b}+j_{\rm m}{\rm sin}(2\pi v_{\rm m}t)]$, где $j_{\rm m}$ и $v_{\rm m}$ – глубина и частота модуляции, а $j_{\rm b}$ – постоянная составляющая. Предполагалось, что $j_{\rm b}=x_{\rm b}j_{\rm th},\,j_{\rm m}=x_{\rm m}x_{\rm b}j_{\rm th},\,$ где $j_{\rm th}=edR_{\rm sp-th}$ – стационарный порог, $R_{\rm sp-th}$ – пороговая скорость спонтанной рекомбинации. Расчеты выполнены при условии, что для любого значения $v_{\rm g}(0)$ величина $x_{\rm b}=1,1,\,$ а $x_{\rm m}=0,6.$

Для описания свипирования частоты излучения использовалось, аналогично [3], соотношение $v_g(t) = v_c(t) = v_c(0)n(0)/n(t)$, где n — показатель преломления активной среды, а v_c — частота продольной моды резонатора. Предполагается, что изменение показателя преломления обусловлено только варьированием концентрации неравновесных носителей тока [4]: $n(t) = n_0 + \sigma N(t) + b(hv_g - E_g)$, где E_g — ширина запрещенной зоны полупроводника, а n_0 , σ и b — константы. Данное предположение справедливо