Непрерывные квантово-каскадные лазеры терагерцового диапазона, выращенные методами МПЭ и МОСГЭ

Р. А. Хабибуллин^{1,2*}, Д. В. Ушаков³, А. А. Афоненко³, А. Ю. Павлов², Р. Р. Галиев², Д. С. Пономарев², Н. А. Малеев⁴, А. П. Васильев⁵, А. Г. Кузьменков⁴, М. А. Бобров⁴, С. А. Блохин⁴, В. В. Андрюшкин⁴, Ф. И. Зубов⁶, М. В. Максимов⁶, Д. А. Белов⁷, А. В. Иконников⁷, В. А. Анфертьев⁸, Р. Х. Жукавин⁸, В. И. Гавриленко⁸,

И. Е. Мартычев⁹, Т. А. Багаев⁹, Г. С. Соколовский⁴, А. А. Мармалюк⁹, М. А. Ладугин⁹

1 Московский физико-технический институт, Институтский пер., 9, Долгопрудный, Московская обл., 141701

³Белорусский государственный университет, пр. Независимости, 4, Минск, 220030

⁵НТЦ Микроэлектроники РАН, Политехническая, 26, Санкт-Петербург, 19021

В работе представлены результаты по созданию непрерывных квантово-каскадных лазеров терагерцового диапазона (ТГц ККЛ) на основе GaAs/AlGaAs-гетероструктур, выращенных двумя эпитаксиальными методами – молекулярно-пучковая эпитаксия (МПЭ) и МОС-гидридная эпитаксия (МОСГЭ).

Для МПЭ ТГц ККЛ был разработан двухфотонный зонный дизайн на основе четырех квантовых ям GaAs/AlGaAs в активном модуле с рекордной толщиной инжекционного барьерного слоя $t_{ini} = 7,34$ нм для уменьшения туннельного тока в структуре [1]. Изготовлены МПЭ ТГц ККЛ с двойным металлическим волноводом с шириной лазерных полосков 100 мкм и рабочим током/напряжением – 0,5А/15В. Благодаря двухфотонному зонному дизайну продемонстрирована широкополосная генерация 3,1-3,9 ТГц (рис. 1). Уменьшение ширины лазерного полоска до 20 и 30 мкм позволило уменьшить токи инжекции МПЭ ТГи ККЛ до 100–200 мА и впервые продемонстрировать непрерывную генерацию у отечественных МПЭ ТГц ККЛ. Максимальная рабочая температура непрерывных МПЭ ТГц ККЛ составила около 90 К, что лишь на 39 К уступает мировому рекорду [2].

Для МОСГЭ ТГц ККЛ был разработан однофотонный зонный дизайн для высокочастотной генерации в диапазоне 4,3-4,7 ТГц. Изготовлены МОСГЭ ТГц ККЛ с двойным металлическим волноводом с набором ширин лазерных полосков от 20 мкм до 150 мкм. Образцы лазеров с узкими полосками продемонстрировали рабочие токи/напряжения около 0,1-0,2 А/10 В, что позволило продемонстрировать непрерывный режим генерации в диапазоне 4,3-4,6 ТГц (см. рис. 1). Максимальная рабочая температура непрерывных МОСГЭ ТГц ККЛ составила около 20 К. В научной литературе не сообщалось о непрерывных МОСГЭ ТГц ККЛ, что позволяет говорить о создании первого в мире непрерывного ТГц ККЛ, выращенного методом МОСГЭ.

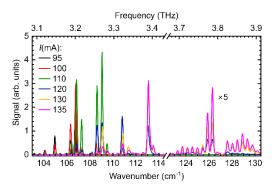


Рис. 1. Спектры генерации непрерывных МПЭ ТГц ККЛ (слева) и МОСГЭ ТГц ККЛ (справа)

Работа выполнена при поддержке гранта РНФ № 23-19-00436.

- 1. R.A. Khabibullin, D.V. Ushakov, A.A. Afonenko, et al. // J. Appl. Phys. 2024. 136, 194504.
- 2. C.A. Curwen, S. J. Addamane, J. L. Reno, M. Shahili, et al. // AIP Advances. 2021. 11(12). 125018.

412 Секция 3

²Институт сверхвысокочастотной полупроводниковой электроники им. В. Г. Мокерова РАН, Нагорный проезд, 7, стр. 5, Москва, 117105

⁴Физико-технитеский институт им. А. Ф. Иоффе РАН, Политехническая, 26, Санкт-Петербург, 19021

 $^{^{6}}$ СПб АУ РАН им. Ж. И. Алфёрова, ул. Хлопина, 8, корп. 3, лит. А, Санкт-Петербург, 194021

⁷МГУ им. М. В. Ломоносова, Ленинские горы, ГСП-1, Москва, 119991

⁸Институт физики микроструктур РАН, ул. Академическая, 7, д. Афонино, Кстовский р-н, Нижегородская обл., 603087

⁹НИИ «Полюс» им. М. Ф. Стельмаха, ул. Введенского, 3, корп. 1, Москва, 117342

^{*}khabibullin.ra@mipt.ru