БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Ректор Белорусского государственного университета

🗽 А.Д.Король

моля 2024 г

Ресистрационный № 2074/м.

СОВРЕМЕННЫЕ ЧИСЛЕННЫЕ МЕТОДЫ И ПАКЕТЫ ПРИКЛАДНЫХ ПРОГРАММ В МЕХАНИКЕ

Учебная программа учреждения образования по учебной дисциплине для специальности:

7-06-0533-06 Механика и математическое моделирование

Профилизация: Теоретическая и прикладная механика

Учебная программа составлена на основе ОСВО 7-06-0533-06-2023 и учебного плана №М54-5.4-44/уч. от 15.02.2023.

составитель:

Журавков М.А., заведующий кафедрой теоретической и прикладной механики механико-математического факультета Белорусского государственного университета, доктор физико-математических наук, профессор **Лопатин С.Н.**, доцент кафедры теоретической и прикладной механики механико-математического факультета Белорусского государственного

РЕЦЕНЗЕНТЫ:

Василевич Ю.В., доктор физико-математических наук, профессор, профессор кафедры Теоретическая механика и механика материалов машиностроительного факультета БНТУ

Коновалов О.Л., заведующий НИЛ факультета прикладной математики и информатики, кандидат физико-математических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой теоретической и прикладной механики БГУ (протокол №12 от 28.05.2024);

университета, кандидат физико-математических наук

Научно-методическим советом БГУ (протокол № 9 от 28.06.2024)

Заведующий кафедрой

М.А. Журавков

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Цели и задачи учебной дисциплины

Цель учебной дисциплины «Современные численные методы и пакеты прикладных программ в механике» - развитие знаний, компетенций и навыков обучающихся в области современных численных методов механики, современных пакетов прикладных программ.

Задачи учебной дисциплины «Современные численные методы и пакеты прикладных программ в механике»:

- знакомство с современными технологиями проведения численного анализа в механике;
 - знакомство со средствами распределенных вычислений;
- знакомство с современными сопряженными методами численного анализа;
- освоение облачных средств написания программного кода и запуска расчетов;
 - освоение современных методов сбора и анализа данных;
- знакомство и освоение современных пакетов прикладных программ для различных разделов механики.

Место учебной дисциплины в системе подготовки специалиста с углубленным высшим образованием (магистра).

Учебная дисциплина относится к модулю «Актуальные вопросы современной механики», учреждения образования.

Связи с другими учебными дисциплинами, включая учебные дисциплины компонента учреждения высшего образования, дисциплины специализации и др.

Данная дисциплина опирается и использует знания ранее изучаемых дисциплин: «Механика сплошной среды», «Математические методы механики деформируемого твёрдого тела и основы механики разрушения»; «Численные методы механики сплошной среды».

Требования к компетенциям

Освоение учебной дисциплины «Современные численные методы и пакеты прикладных программ в механике» должно обеспечить формирование следующих компетенций:

УК: Развивать инновационную восприимчивость и способность к инновационной деятельности.

УПК: Применять численные методы и пакеты прикладных программ к прикладной и теоретической механике, уметь ориентироваться в современных алгоритмах компьютерной математики.

В результате освоения учебной дисциплины студент должен:

знать:

 основные подходы к классификации современных методов численного анализа в механике и основные современные группы численных методов задач механики;

- основные современные тенденции и направления развития семейства методов сеток, основные достоинства и недостатки методов сеток, современные разделы механики эффективного использования методов сеток;
- основные современные тенденции и направления развития семейства методов интегральных уравнений и граничных элементов, основные достоинства и недостатки методов интегральных уравнений, современные разделы механики эффективного использования методов интегральных уравнений;
- основные современные тенденции и направления развития семейства методов конечных элементов, основные достоинства и недостатки методов конечных элементов применительно к различным классам задач механики;
- основы метода дискретных элементов, основные достоинства и недостатки методов дискретных элементов;
- основные направления развития и построения численных схем решения задач механики на основе смешанных технологий, основные смешанные методы численного анализа задач механики.

уметь:

- обоснованно выбирать численный метод для рассматриваемой задачи механики;
- корректно осуществлять построение численной модели в соответствие с выбранным численным методом;
- выполнять численный анализ состояния деформируемых тел со сложной геометрией, структурой и особенностями, и смешанными граничными условиями.

иметь навык:

- навыками построения сеточной, структурной и механической моделей численного анализа задач механики;
 - разработки и отладки программного кода для численного анализа;
- интерпретации и представления результатов расчетов в необходимом виде.

Структура учебной дисциплины

Дисциплина изучается в 1 семестре. Всего на изучение учебной дисциплины «Современные численные методы и пакеты прикладных программ в механике» отведено:

- для очной формы получения высшего образования - 90 часов, в том числе 54 аудиторных часов, из них: лекции - 18 часов, лабораторные занятия - 36 часов.

Трудоемкость учебной дисциплины составляет 3 зачетные единицы. Форма промежуточной аттестации – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1. О методах численного моделирования в рамках моделей сплошной и дискретных сред

Тема 1.1. Введение в дисциплину. Общая характеристика численных методов механики

О подходах к классификации численных методов. Современная классификация численных методов, их краткая характеристика. Основные этапы построения численных моделей выделенных групп методов.

Раздел 2. Основные современные методы численного анализа в механике деформируемого твердого тела. Континуальные методы

Тема 2.1. Метод конечных разностей и его современные реализации.

Основные принципы метода конечных разностей. Современные подходы к построению сеток. Метод конечных объемов и иные модификации метода конечных разностей. Учет наличия трещин и нелинейный анализ в методе конечных разностей/методе конечных объемов. Современные пакеты, реализующие технологии метода конечных разностей.

Тема 2.2. Метод граничных элементов и его современные реализации.

Основные принципы метода граничных элементов, метода граничных интегральных уравнений. Прямая и неявная формулировки метода граничных интегральных уравнений. Моделирование нелинейности и неоднородной структуры. Моделирование трещин. Альтернативные формулировки, связанные с методом граничных элементов. Развитие метода граничных элементов. Современные пакеты, реализующие технологии метода граничных элементов /метода граничных интегральных уравнений.

Тема 2.3. Метод конечных элементов и родственные ему методы.

Основные принципы метода конечных элементов. Моделирование нелинейности и неоднородной структуры. Моделирование трещин и нарушений в твердых деформируемых средах. Производные технологии метода конечных элементов, их характеристика. Современные пакеты, реализующие технологии метода конечных элементов.

Тема 2.4. «Безсеточные» методы.

Основные понятия и принципы безсеточных методов. h-метод и p-метод сходимости. Примеры безсеточных методов, их характеристика.

Tema 2.5. Достоинства и недостатки континуальных методов применительно к решению «нестандартных» прикладных задач механики.

Основные преимущества различных классов континуальных методов и их недостатки при решении разнообразных типов задач механики.

Раздел 3. Основные современные методы численного анализа в механике деформируемого твердого тела. Дискретные методы

Тема 3.1. О методах дискретных элементов. Явные и неявные реализации метода дискретных элементов.

Общие понятия и положения метода дискретных элементов. Явные и неявные методы. Различные реализации метода дискретных элементов. Дискретизация и построение блоков. Определение связей между блоками, представление контактов. Уравнения связей блочных структур. Метод отдельных элементов. Метод анализа дискретных деформаций. Метод дискретных элементов для систем частиц. Модели покрытия динамической решеткой.

Тема 3.2. Метод сетки дискретных трещин.

Основные принципы метода сетки дискретных трещин. Стохастическое моделирование систем трещин. Моделирование течения жидкости в трещинах. Теория просачивания.

Тема 3.3. Метод блочных элементов.

Особенности дискретных сред. Применение МБЭ к задачам геомеханики. Решение задач при помощи сопряженного МКЭ-МБЭ алгоритма.

Тема 3.4. Решеточная модель.

Основные принципы и подходы построения алгоритмов решеточных моделей. Типы решеточных моделей.

Тема 3.5. Эффективность и недостатки дискретных методов.

Основные преимущества различных реализаций дискретных методов и их недостатки при решении разнообразных типов задач механики.

Раздел 4. Основные современные методы численного анализа в механике деформируемого твердого тела. Сопряженные методы.

Тема 4.1. Гибридные модели. Сплошные и разрывные сопряженные методы.

Основные определения. Принципы построения гибридных моделей. Примеры задач, реализованных на базе гибридных моделей. Классификация сопряженных методов.

Тема 4.2. Гибридные методы конечных элементов/методы граничных элементов, методы дискретных элементов/методы граничных элементов, методы конечных элементов/методы дискретных элементов модели.

Сущность гибридных методов конечных элементов/методов граничных элементов, методов дискретных элементов/методов граничных технологий. Основные области использования различных гибридных методов.

Тема 4.3. Многомасштабные сопряженные методы.

Сущность технологий многомасштабного (разномасштабного) моделирования. Использование данной технологии для моделирования процессов трещинообразования и разрушения. Типы многомасштабных сопряженных методов.

Раздел 5. Основные современные методы численного анализа в механике деформируемого твердого тела. Иные численные методы.

Тема 5.1. Краткая характеристика численных методов, отличных от базовых (метод конечных разностей, метод конечных элементов, метод граничных элементов).

Метод нейронных сетей. Численно-экспериментальные подходы.

Раздел 6. Современные численные методы и пакеты прикладных программ в механике

Тема 6.1. Современные САД и САЕ системы.

Примеры программных комплексов. Решение прикладных задач с использованием ANSYS, Solidworks, Femap, ITASCA и др.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

Очная (дневная) форма получения высшего образования с применением дистанционных образовательных технологий (ДОТ)

–		Количество аудиторных часов						
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
1.1	Раздел 1. О методах численного моделирования в рамках моделей сплошной и дискретных сред. Тема 1. Введение в дисциплину. Общая характеристика численных методов механики.	1						Устный опрос
2.1	Раздел 2. Основные современные методы численного анализа в механике деформируемого твердого тела. Континуальные методы. Тема 1. Метод конечных разностей и его современные реализации.	1			2			Защита научно- исследовательских эссе
2.2	Раздел 2. Основные современные методы численного анализа в механике деформируемого твердого тела. Континуальные методы. Тема 2. Метод граничных элементов и его современные реализации.	2			4			Защита научно- исследовательских эссе

2.3	Раздел 2. Основные современные методы численного анализа в механике деформируемого твердого тела. Континуальные методы. Тема 3. Метод конечных элементов и родственные ему методы.	2	4	Защита научно- исследовательских эссе
2.4, 2.5	Раздел 2. Основные современные методы численного анализа в механике деформируемого твердого тела. Континуальные методы. Тема 4. «Безсеточные» методы. Тема 5. Достоинства и недостатки континуальных методов применительно к решению «нестандартных» прикладных задач механики.	2		Устный опрос
3.1	Раздел 3. Основные современные методы численного анализа в механике деформируемого твердого тела. Дискретные методы. Тема 1. О методах дискретных элементов. Явные и неявные реализации метода дискретных элементов.	2		Устный опрос
3.2, 3.3, 3.4, 3.5	Раздел 3. Основные современные методы численного анализа в механике деформируемого твердого тела. Дискретные методы. Тема 2. Метод сетки дискретных трещин. Тема 3. Метод блочных элементов. Тема 4. Решеточная модель. Тема 5. Эффективность и недостатки дискретных методов.	2		Устный опрос
4.1, 4.2, 4.3.	Раздел 4. Основные современные методы численного анализа в механике деформируемого твердого тела.	2	2	Защита научно- исследовательских эссе

	Сопряженные методы. Тема 1. Гибридные модели. Сплошные и разрывные сопряженные методы. Тема 2. Гибридные методы конечных элементов/методы граничных элементов, методы дискретных элементов/методы граничных элементов, методы конечных элементов/методы дискретных элементов модели. Тема 3. Многомасштабные сопряженные методы.			
5.1	Раздел 5. Основные современные методы численного анализа в механике деформируемого твердого тела. Иные численные методы. Тема 1. Краткая характеристика численных методов, отличных от базовых (метод конечных разностей, метод конечных элементов).	2		Устный опрос
6.1	Раздел 6. Современные численные методы и пакеты прикладных программ в механике. Тема 1. Современные CAD и CAE системы.	2	24	Защита научно- исследовательских эссе
	Итого	18	36	

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Основная литература

- 1. Журавков М.А. Современные численные методы в механике: курс лекций / М.А. Журавков; БГУ, Механико-математический факультет, Кафедра теоретической и прикладной механики. Минск: БГУ, 2022. 132 с. https://elib.bsu.by/handle/123456789/286556
- 2. Журавков М.А. Технологии искусственного интеллекта и интеллектуальные системы компьютерного моделирования и инженерных расчетов. Вводный курс: учебное пособие / М.А. Журавков; БГУ, Механикоматематический факультет Минск: БГУ, 2024. 177 с. https://elib.bsu.by/handle/123456789/309072
- 3. Журавков М.А., Лопатин С.Н. Основные подходы, принципы и особенности механико-математического моделирования в геомеханике: курс лекций/ М.А. Журавков, С.Н. Лопатин; БГУ, Механико-математический факультет, Кафедра теоретической и прикладной механики. Минск: БГУ, 2024. 125 с. https://elib.bsu.by/handle/123456789/320041

Дополнительная литература

- 1. Журавков М.А., Коновалов О.Л., Богдан С.И., Прохоров П.А., Круподеров А.В. Компьютерное моделирование в геомеханике / Под общ. ред. М.А. Журавкова. Мн. БГУ, 2008. 443 с.
- 2. Computer Mechanics: Introduction to FEA and CAD/CAE Systems: lecture course / Громыко О.В., Журавков М.А., Медведев Д.Г., Гляков С.А., Громыко А.О., Громыко А.О., Царева А.А.; под общ. ред. проф. М.А. Журавкова. Минск: БГУ, 2011. 303 с.
- 3. Журавков М.А., Круподеров А.В., Щербаков С.С. Граничноэлементное моделирование в механике. Учебное пособие для обучающихся по специальности «Механика и математическое моделирование». – Минск: БГУ, 2014. – 174 с. (учебное пособие с грифом УМО).

Перечень рекомендуемых средств диагностики и методика формирования итоговой отметки

Диагностика результатов учебной деятельности по дисциплине «Современные численные методы и пакеты прикладных программ в механике» проводится, как правило, во время аудиторных занятий. Для диагностики используются:

- отчеты по лабораторным работам с их устной защитой;
- защита научно-исследовательских эссе;
- устный опрос;
- собеседование.

Отметка за ответы на лекциях (опрос) и лабораторных занятиях включает в себя полноту ответа, наличие аргументов, примеров из практики.

Оценка эссе формируется на основе следующих критериев: оригинальность (новизна) постановки проблемы и способа ее интерпретации/решения, самостоятельность и аргументированность суждений, грамотность и стиль изложения.

Контрольные мероприятия проводятся в соответствии с учебнометодической картой дисциплины.

Формой промежуточной аттестации по дисциплине «Современные численные методы и пакеты прикладных программ в механике» учебным планом предусмотрен экзамен.

Для формирования итоговой отметки по учебной дисциплине используется модульно-рейтинговая система оценки знаний студента, дающая возможность проследить и оценить динамику процесса достижения целей обучения. Рейтинговая система предусматривает использование весовых коэффициентов для текущей и промежуточной аттестации студентов по учебной дисциплине.

Формирование итоговой отметки в ходе проведения контрольных мероприятий текущей аттестации (примерные весовые коэффициенты, определяющие вклад текущей аттестации в отметку при прохождении промежуточной аттестации):

ответы при собеседовании, устном опросе – 60 %;

защита научно-исследовательских эссе – 40 %.

Итоговая отметка по дисциплине рассчитывается на основе итоговой отметки текущей аттестации (рейтинговой системы оценки знаний) 40 % и экзаменационной отметки 60 %.

Описание инновационных подходов и методов к преподаванию учебной дисциплины

При организации образовательного процесса используется *практико-ориентированный подход*, который предполагает:

- освоение содержание образования через решения практических задач;
- приобретение навыков эффективного выполнения разных видов профессиональной деятельности;
- использование процедур, способов оценивания, фиксирующих сформированность профессиональных компетенций.

Методические рекомендации по организации самостоятельной работы

При изучении учебной дисциплины следующие формы самостоятельной работы:

– поиск (подбор) и обзор литературы и электронных источников по индивидуально заданной проблеме дисциплины;

- изучение материала, вынесенного на самостоятельную проработку;
- подготовка к лекциям и лабораторным занятиям;
- работы, предусматривающие подготовку: отчетов по лабораторным работам с устной защитой и защиты научно-исследовательских эссе.

Тем самым, имеется в виду постепенное превращение обучения в самообучение, когда магистрант должен получать знания главным образом за счет креативной самостоятельной работы, самостоятельно осуществляя поиск необходимой информации и созидательно прорабатывая ее с тем, чтобы выполнить необходимые умозаключения и получить результаты.

В этом случае, выполняя учебные задачи, магистранты самостоятельно приобретают новые знания, навыки и умения (в частности, умение анализировать и принимать решения в нестандартных ситуациях), что очень важно для эффективной будущей самостоятельной профессиональной деятельности.

Тематика научно-исследовательских эссе

- 1. Применение метода конечных элементов в задачах современной механики
- 2. Применение метода дискретных элементов в задачах современной механики
- 3. Применение метода блочных элементов в задачах современной механики
 - 4. Применение безсеточных методов в задачах современной механики
 - 5. Преимущества и недостатки численного моделирования в механике
 - 6. Сравнительный анализ современных САЕ программных комплексов
 - 7. Численные методы в задачах биомеханики
 - 8. Численные методы в задачах геомеханики
 - 9. Численные методы в задачах машиностроения
 - 10. Численные методы в задачах строительной механики

Примерный перечень вопросов к экзамену

- 1. Классификация методов численного моделирования в рамках моделей сплошной и дискретных сред.
- 2. Основные различия между континуальными и дискретными методами.
- 3. Основные современные континуальные методы численного анализа в механике сплошных сред (MCC).
- 4. Сущность метода конечных разностей (МКР). Технологии моделирования особенностей строения и нелинейного поведения деформируемых сред.
 - 5. Современные модификации метода конечных разностей.
 - 6. Метол конечных объемов.

- 7. Основные отличия, преимущества и недостатки метода конечных разностей (МКР) по сравнению с методом граничных интегральных уравнений (МГИУ) и метода конечных элементов (МКЭ).
 - 8. Основные принципы метода граничных элементов (МГЭ).
- 9. Прямая и неявная формулировки метода граничных элементов (МГЭ).
- 10. Подходы к моделированию трещин при помощи метода граничных элементов (МГЭ).
 - 11. Современные технологии метода граничных элементов (МГЭ).
 - 12. Развитие методов граничных элементов.
- 13. Основные преимущества и недостатки метода граничных элементов (МГЭ) по сравнению с методом конечных элементов (МКЭ) и методом конечных разностей (МКР).
 - 14. Основные принципы метода конечных элементов (МКЭ).
- 15. Основное уравнение метода конечных элементов (МКЭ). Глобальная матрица жесткости.
 - 16. Моделирование трещин в методе конечных элементов (МКЭ).
- 17. Основные преимущества и недостатки метода конечных элементов (МКЭ).
- 18. Основные производные реализации метода конечных элементов (МКЭ).
 - 19. Безсеточные («Безэлементные») методы.
- 20. Основные принципы построения методов дискретных элементов (МДЭ).
 - 21. Основные группы методов дискретных элементов.
- 22. Сопряженные/гибридные методы. Основные группы сопряженных методов.
 - 23. Многомасштабные сопряженные методы
- 24. Основные этапы численного моделирования механических процессов на базе современного программного обеспечения.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УО

Название учебной	Название	Предложения	Решение,
дисциплины,	кафедры	об изменениях в	принятое
с которой		содержании	кафедрой,
требуется согласование		учебной программы	разработавшей
		учреждения	учебную
-4		высшего	программу (с
		образования по	указанием даты и
		учебной	номера протокола)
	ari.	дисциплине	
1. Механика неупругого	Кафедра	Изменений не	протокол № 12
и нелинейного	теоретической	требуется	От 28.05.2024
деформиро-вания	и прикладной		01 20.03.2021
твердого тела	механики		
2. Решение прикладных	Кафедра	Изменений не	протокол № 12
задач механики в специа-	теоретической	требуется	От 28.05.2024
лизированных пакетах	и прикладной		01 20.03.2024
	механики		

Заве	дующ	ий кафед	црой
9-12	903.	-uam	Hayk

(ученая степень, ученое звание)

(подпись)

М.А. Туровков (И.О.Фамилия)

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ

на/_	учебный год
------	-------------

3.0		I		
№ п/п	Дополнения и из	менения	Oci	нование
11/11				
Учебна	я программа пересмотре			
		(протокол №	OT	202_ г.)
	(название кафедры)			
Заведу	ющий кафедрой			
(*********	степень, ученое звание)			
(ученая	степень, ученое звание)		(И.О.Фа	амилия)
УТВЕРХ	КДАЮ			
	акультета			
(ученая с	тепень, ученое звание)		(И.О.Фа	 милия)