ЛИТЕРАТУРА

1. Роберт-Нику М.Ц. Химия и технология химико-фармацевтических препаратов. М.: Медгиз, 1954. – С. 288–289.

2. Synthesis, molecular docking and biological evaluation of new quinoline analogues as potent anti-breast cancer and antibacterial agents / S.V. Rathod [et al.] // Indian Journal of Chemistry -Section B. – 2021. – Vol.60, № 9. – P. 1215–1222.

3. Facile synthesis of phenyl esters and amides of cinchophen using EDC.HCl and antibacterial activity / S. Shankerrao [et al.] // OCAIJ. – 2012. – Vol. 8, № 1. – P. 24-28.

4. Design of geometry, synthesis, spectroscopic (FT-IR, UV/Vis, excited state, polarization) and anisotropy (thermal conductivity and electrical) properties of new synthesized derivatives of (E,E)-azomethines in colored stretched poly (vinyl alcohol) matrix / S. Shahab [et al.] // J. Mol. Struct. – 2018. – Vol. 1157. – P. 536–550.

5. Upadhyay, A. A spectrophotometric study of impact of solvent, substituent and cross-conjugation in some 4-aminoantipyrine based Schiff base / A. Upadhyay, P. K. Kar, S. Dash // Spectrochimica Acta Part A: Mo-lecular and Biomolecular Spectroscopy. – 2020. – Vol. 233. – № 118231.

КВАНТОВО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЭЛЕКТРОННАЯ СТРУКТУРА И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ПРОИЗВОДНЫХ ПИРАЗОЛА

QUANTUM CHEMICAL MODELING, ELECTRONIC STRUCTURE AND BIOLOGICAL ACTIVITY OF PYRAZOL DERIVATIVES

А. А. Августинович^{1,2}, С. Н. Шахаб^{1,2} A. A. Augustinovich^{1,2}, S. N. Shahab^{1,2}

¹Белорусский государственный университет, БГУ, г. Минск, Республика Беларусь ²Учреждение образования «Международный государственный экологический институт имени А. Д. Сахарова» Белорусского государственного университета, МГЭИ им. А. Д. Сахарова БГУ, г. Минск, Республика Беларусь

avgnastya@mail.ru

¹Belarusian State University, BSU, Minsk, Republic of Belarus ²International Sakharov Environmental Institute of Belarusian State University, ISEI BSU, Minsk, Republic of Belarus

В настоящей работе проведено квантово-химическое моделирование 3-(4-нитрофенил)-5-(2,6димтилфенил)-1Н-пиразола и 3-(2-бромфенил)-5-(4-бромфенил)-1Н-пиразола с помощью полуэмпирического метода РМ6. Исследована электронная структура соединения. Рассчитаны электронные свойства, такие как Е_{НОМО} и Е_{LUMO}, а так же ширина запрещенной зоны как основной параметр биологической активности органических соединений.

In this paper, quantum chemical modeling of 3-(4-nitrophenyl)-5-(2,6-dimethylphenyl)-1H-pyrazole and 3-(2-bromophenyl)-5-(4-bromophenyl)-1H-pyrazole was carried out using the semi-empirical PM6 method. The electronic structure of the compound is investigated. Electronic properties, such as E_{HOMO} and E_{LUMO} , as well as the band gap width as the main parameter of the biological activity of organic compounds are calculated.

Ключевые слова: квантово-химическое моделирование, электронная структура, биологическая активность, HOMO, LUMO.

Keywords: quantum chemical modeling, electronic structure, biological activity, HOMO, LUMO.

https://doi.org/10.46646/SAKH-2023-1-375-379

Поиск новых эффективных лекарственных препаратов является одним из приоритетных направлений в современной фармацевтической индустрии. Разработка инновационного лекарственного препарата всегда начинается с поиска нового биологически активного соединения с последующим подтверждением его эффективности и безопасности. Одним из перспективных и развивающихся направлений в данной области является поиск средств, близких по структуре к «естественным» пиримидинам [1]. Как известно [2], пиримидиновые основания являются составной частью нуклеиновых кислот, в связи с чем их производные сочетают в себе несколько видов фармакологической активности: анаболической, противовирусной, противовоспалительной, противоопухолевой и др. В ряде экспериментов установлено, что соединения этой группы обладают вышеперечисленными свойствами, также ускоряют процессы репаративной регенерации, стимулируют клеточные и гуморальные факторы иммунитета [3]. Использование методов компьютерной химии для изучения физико-химических свойств молекул, по сравнению с экспериментальными исследованиями, значительно ускоряет получение теоретических результатов.

Для расчетов использован персональный компьютер с установленной операционной системой Windows 11, процессор AMD Ryzen 7 (3.20 GHz). Для вычисления начальной геометрии соединения выбран метод молекулярной механик (MM⁺) пакета программ ChemOffice2019. Выбор метода обоснован тем, что он разработан для органических молекул, учитывает потенциальные поля, формируемые всеми атомами рассчитываемой системы, и позволяет гибко модифицировать параметры расчета в зависимости от конкретной задачи [4].

Для изучения биологической активности свойств молекулы рассчитаны энергии HOMO и LUMO, а также ширина запрещенной зоны (Eg = E_{LUMO} – E_{HOMO}), как основной параметр, указывающий на наличие или отсутствие биологической активности.

Проведено полное квантово-химическое моделирование 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1Нпиразола и 3-(2-бромфенил)-5-(4-бромфенил)-1Н-пиразола с помощью полуэмпирического метода РМ6.

Оптимизированная структура соединений представлена на рисунке 1.

Рисунок 1 – Оптимизированные структуры: а) 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1H-пиразола; б) 3-(2-бромфенил)-5-(4-бромфенил)-1H-пиразола

Теоретический спектр поглощения молекулы 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1Н-пиразола с оптимизированной геометрией при учете воды как растворителя рассчитан для 15 одноэлектронных возбуждений. Электронный спектр 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1Н-пиразола для одноэлектронных возбуждений находится в области 577-269 нм. (таблица 1).

Таблица 1

Состояние	Длина волны, нм	Разложение волновых функций по однократно возбужденной конфигурации	Сила осциллятора (f)
$S_0 \rightarrow S_3$	446	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,16
$S_0 \rightarrow S_{II}$	299	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,84

Электронная структура 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1H-пиразола в воде, рассчитанная полуэмпирическим методом РМ6

$S_0 \rightarrow S_{I4}$	274	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,11
--------------------------	-----	--	------

Из рисунка 2 видно, что первая широкая и интенсивная полоса поглощения с максимумом при 446 нм с f = 0,16 относится к переходу в третье возбужденное синглетное состояние молекулы $(S_0 \rightarrow S_3)$. Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению двенадцати конфигураций для одноэлектронных возбуждений (47 \rightarrow 56), (49 \rightarrow 57), (49 \rightarrow 62), (51 \rightarrow 58), (51 \rightarrow 58), (52 \rightarrow 56), (52 \rightarrow 57), (52 \rightarrow 59), (52 \rightarrow 60), (53 \rightarrow 59), (53 \rightarrow 60), (55 \rightarrow 56), (55 \rightarrow 57). Возбуждение электрона с 55 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 57 дает главный вклад в полосу поглощения при 446 нм.

Вторая полоса поглощения наблюдается при 299 нм с f = 0.84 и относится к переходу в возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_{11}$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению одиннадцати конфигураций для одноэлектронных возбуждений (47 \rightarrow 56), (48 \rightarrow 61), (49 \rightarrow 56), (51 \rightarrow 58), (52 \rightarrow 56), (52 \rightarrow 57), (52 \rightarrow 60), (52 \rightarrow 62), (53 \rightarrow 56), (53 \rightarrow 59), (53 \rightarrow 60), (55 \rightarrow 57). (таблица 1, рисунок 2). Возбуждение электрона с 51 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 58 дает главный вклад в полосу поглощения при 299 нм.

Рисунок 2 – УФ спектр 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1H-пиразола, рассчитанный с помощью метода РМ6

Третья полоса поглощения наблюдается при 274 нм с f = 0.11 и относится к переходу в возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_{14}$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению десяти конфигураций для одноэлектронных возбуждений (49 \rightarrow 57), (49 \rightarrow 59), (52 \rightarrow 57), (52 \rightarrow 60), (53 \rightarrow 57), (53 \rightarrow 62), (55 \rightarrow 56), (55 \rightarrow 57), (55 \rightarrow 59), (55 \rightarrow 60). (таблица 1, рисунок 2). Возбуждение электрона с 55 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 60 дает главный вклад в полосу поглощения при 274 нм.

Другие возбужденные состояния исследуемого соединения имеют очень малую интенсивность (f≈0). Данные переходы запрещены по симметрии.

Электронные спектр 3-(2-бромфенил)-5-(4-бромфенил)-1Н-пиразола для одноэлектронных возбуждений находится в области 421-254 нм. В таблице 2 представлены только те переходы, в которых сила осциллятора больше 0,1.

Из рисунка 3 видно, что первая широкая и интенсивная полоса поглощения с максимумом при 421 нм с f = 0,14 относится к переходу в первое возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_1$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению пяти конфигураций для одноэлектронных возбуждений ($35 \rightarrow 48$), ($42 \rightarrow 54$), ($43 \rightarrow 51$), ($46 \rightarrow 48$), ($47 \rightarrow 48$). Возбуждение электрона с 46 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 48 дает главный вклад в полосу поглощения при 421 нм.

Вторая полоса поглощения наблюдается при 286 нм с f = 0,66 и относится к переходу в возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_9$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению девяти конфигураций для одноэлектронных возбуждений

 $(38 \rightarrow 48), (39 \rightarrow 48), (43 \rightarrow 51), (45 \rightarrow 48), (45 \rightarrow 53), (47 \rightarrow 48), (47 \rightarrow 50), (47 \rightarrow 54), (47 \rightarrow 56).$ (таблица 2, рисунок 3). Возбуждение электрона с 47 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 48 дает главный вклад в полосу поглощения при 286 нм.

Таблица 2

Состояние	Длина волны, нм	Разложение волновых функций по однократно воз- бужденной конфигурации	Сила осциллятора (f)
$S_0 \rightarrow S_1$	421	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,14
$S_0 \rightarrow S_9$	286	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,66
$S_0 \rightarrow S_{11}$	267	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,43
$S_0 \rightarrow S_{15}$	254,19	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,16

Электронная структура 3-(2-бромфенил)-5-(4-бромфенил)-1H-пиразола в воде, рассчитанная полуэмпирическим методом РМ6

Рисунок 3 – УФ спектр 3-(2-бромфенил)-5-(4-бромфенил)-1Н-пиразола, рассчитанный с помощью метода РМ6

Третья полоса поглощения наблюдается при 267 нм с f = 0.43 и относится к переходу в возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_{11}$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению пятнадцати конфигураций для одноэлектронных возбуждений (42 \rightarrow 50), (42 \rightarrow 56), (43 \rightarrow 51), (45 \rightarrow 48), (45 \rightarrow 50), (45 \rightarrow 53), (45 \rightarrow 54), (46 \rightarrow 48), (46 \rightarrow 50), (46 \rightarrow 53), (46 \rightarrow 54), (46 \rightarrow 56), (47 \rightarrow 48), (47 \rightarrow 50), (47 \rightarrow 54). (таблица 2, рисунок 3). Возбуждение электрона с 46 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 50 дает главный вклад в полосу поглощения при 267 нм.

Четвертая полоса поглощения наблюдается при 254 нм с f = 0.15 и относится к переходу в возбужденное синглетное состояние молекулы ($S_0 \rightarrow S_{15}$). Расчеты показывают, что данное возбужденное состояние описывается волновой функцией, отвечающей наложению семи конфигураций для одноэлектронных возбуждений (39 \rightarrow 53), (45 \rightarrow 48), (45 \rightarrow 50), (45 \rightarrow 53), (46 \rightarrow 53), (47 \rightarrow 50), (47 \rightarrow 53). (таблица 2, рисунок 3). Возбуждение электрона с 45 молекулярной орбитали на нижнюю вакантную молекулярную орбиталь 50 дает главный вклад в полосу поглощения при 254 нм.

Другие возбужденные состояния исследуемого комплекса имеют очень малую интенсивность ($f \approx 0$). Данные переходы запрещены по симметрии.

Рассчитана ширина запрещенной зоны как основной параметр биологической активности органических соединений и энергия HOMO, LUMO (таблица 3).

Таблица 3

Соединение	E _{LUMO} , eV	E _{HOMO} , eV	E _g , eV
3-(4-нитрофенил)-5- (2,6-димтилфенил)-1Н- пиразола	-0,073	-0, 359	0,286
3-(2-бромфенил)-5-(4- бромфенил)-1Н-пиразола	-0,027	-0,34	0,313

Электрические свойства 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1H-пиразола и 3-(2-бромфенил)-5-(4-бромфенил)-1H-пиразола

Проведено оценочное моделирование производных пиразола методом молекулярной механики ММ⁺. Полуэмпирическим методом РМ6 выполнено квантово-химическое моделирование 3-(4-нитрофенил)-5-(2,6димтилфенил)-1Н-пиразола и 3-(2-бромфенил)-5-(4-бромфенил)-1Н-пиразола.

Рассчитан электронный спектр молекул в среде растворителя воды. Установлено, что самый интенсивный пик поглощения 3-(4-нитрофенил)-5-(2,6-димтилфенил)-1Н-пиразола наблюдается при длине волны 299 нм., а у 3-(2-бромфенил)-5-(4-бромфенил)-1Н-пиразола – 286 нм. Ширина запрещенной зоны соединений составляет 0,286 и 0,313 Эв, соответственно, что свидетельствует о биологической активности изученных структур.

ЛИТЕРАТУРА

1. Гимадиева, А. Р. Синтез и биологическая активность производных пиримидина / А. Р. Гимадиева, Ю. Н. Чернышенко, А. Г. Мустафин, И. Б. Абдрахманов // Башкирский химический журнал. – 2007. – №14(3). – С. 5–2.

2. *Борисова, Н. С.* Исследование взаимодействия янтарной и фумаровой кислот с урацилом и его производными / Н. С. Борисова, Г. И. Ишмуратова, О. И. Валиева, И. М. Борисов, Ю. С. Зимин, А. Г. Мустафин // Вестник Башкирского университета. – 2012. – № 17 (4). – С. 1687–1690.

3. Осипов, А.О. Фармакологическая активность производных пиримидина / П.П. Пурыгин, А.В. Дубищев, А. А. Осипова // Вестник СамГУ – Естественнонаучная серия. – 2011. – № 8(89). – С. 167-172. 6

4. *Tarun, I.* Antioxidant activity of hexahydroquinolines. Journal of the Belarusian State University. Ecology.2019. Vol. 2. P. 77–83.

5. *Shahab, S.* DFT study of physisorption effect of CO and CO₂ on furanocoumarins for air purification / Shahab S., Sheikhi M., Khaleghian M., Kumar R., Murashko M., // Journal of Environmental Chemical Engineering. – 2018. – P. 4784–4796.