International Journal of Pure and Applied Mathematics

Volume 82 No. 4 2013, 631-637
ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu
doi: http://dx.doi.org/10.12732/ijpam.v82i4.12 ijpam.eu

DECOMPOSITION ALGORITHMS POTENTIALS FOR
THE NON-HOMOGENEOUS GENERALIZED NETWORKED
PROBLEMS OF LINEAR-FRACTIONAL PROGRAMMING

L.A. Pilipchuk

Belarussian State University
Nezalezhnosti Ave. 4, 220050, Minsk, BELARUS

Abstract: We use potentials for calculate a reduced costs in the increment of
the objective function for the linear-fractional non-homogeneous flow program-
ming optimization problem with additional constraints of general kind. The
effective algorithm for solution of the system of potentials for a sparse matrix
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1. Introduction

We consider the linear-fractional non-homogeneous flow programming optimiza-
tion problem with additional constraints of general kind:

Yo > phah+s
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where G = (I, U) is a finite oriented connected multigraph (multinetwork) with-
out multiple arcs and loops, I is a set of nodes and U C I x [ is a set of multiarcs.
The finite non-empty set K = {1,...,|K|} is the set of different products (com-
modities) transported through the multinetwork G. Let us denote a connected
network corresponding to a certain type of flow k € K: Gk = (IF,U%), I*F C I,
U* = {(i,5)* : (i,5) € UF}, U¥ C U — a set of arcs of the multinetwork G car-
rying the flow of type k € K, I* = [(U*), I(U*) = {i € I : i € I*} is the set of
nodes used for transporting (producing/consuming/transiting) the k"* product.
In order to distinguish the products, which can simultaneously pass through an
multiarc (4, 7) € U, we introduce the set K (i,7) = {k € K : (i,j)* € U*}. Simi-
larly, K (i) = {k € K :i € I*} is the set of products simultaneously transported
through a node ¢ € I. Let’s define a set Uy as an arbitrary subset of multiarcs
of the multinetwork G, Uy C U. Each multiarc (i,j) € Up has an aggregate
capacity constraint for a total amount of transported products from a subset
Ky(i,j) € K(i,7),|Ko(3,7)| > 1. For all multiarcs (i,j) € U we assume the
amount of each product k € K (i, j) to be non-negative. For a set K(i,j) are
true the following conditions: Ki(i,j) = K(i,7) \ Ko(i,7), if (i,7) € Uy and
Ky(i,j) € K(i,j), if (i,5) € U\ Up. Moreover, each multiarc (i,j) € U can
be equipped with carrying capacities for products from a set K;(i,j), where
Ki(i,j) € K(i,7) is an arbitrary subset of products transported through the
multiare (i,5). L7 (U*) = {j € I* : (i,j) € U*}, I, (U*) = {j € I* : (j,3) €
Uk}, xfj — amount of the k" product transported through an multiarc (4, 5);
df‘j ~ carrying capacity of an multiarc (i,j) for the & product; d?j — aggre-
gate capacity of an multiarc (i, j) € Uy for a total amount of products Ky (i, 5);
)\Zp — weight of a unit of the k" product transported through an multiarc
(i,7) in the p'* additional constraint; M% — a flow transformation coefficient

for arc (i, §)¥, M% €]0,1]; o, — total weighted amount of products imposed by
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the p'" additional constraint; af — intensity of a node i for the k'™ product,
Pi;s iy, 8,7 € R.

2. Sparse Systems for a Potentials

The formula of the increment of the objective function (1) for the extreme
linear-fractional non-homogeneous problem of flow programming (1)-(6) with
additional constraints has the following kind:

Z Z &k(T, p)Axlﬁp + Z TijAZij

kEK (r,p)keUk, (i,5)eU*

S abne) (eh, - Ak,) 4@+

keK k
(Tvp)k EU’“\UL

Af =

where l
A¥(7,p) = AF(r,p) = > rpABD — " 6 (BE), (8)
p=1 (i,5)€U*
AF(r,p) = Ab(1,p) — f(2)AH(T, p),

Ap(r,p)=pb,+ > pioki(r,p),
(i.4)k €Uy

Ab(mp)=df,+ D aiol(r,p),
(i,5)keU¥
ME=XE+ D0 NFS(rp). (rp)f € UNUE, p =TI,
(i,)FeUf

5(Bk ) — 55’3’(7_7 P),k’ € KO(iaj)a 0,k ¢ Ko(i,j)’
(i,5) € Uy, (7, p)* € UR\UF, k € K.
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where = = ( x, (i,7) € Uk € K(i, 7)) be a multiflow of the problem (1)—(6)

i. e. components of the vector x meet the conditions (2)—(6). Along with the
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multiflow z let us define support multiflow {z,Us} as a pair [1], containing of
an arbitrary multiflow x and a support [1, 4] Ug of multigraph G = {I,U} of
the problem (1)-(6), Us = {Uk, k € K,U*}, Ut Cc U* k € K; U* C Uy, Ug =
{(i5) € Un : K9G, )| > 1}, Ks(i,g) = {k € K(i,9) : (i.9)* € U}, () € U,
K%(i,j) = Ks(i,7) ) Ko(i, ), (i,7) € Uy of the problem (1)—(6). A support
Us of multigraph G = {I,U} of the problem (1)-(6) includes a support U, =
{U¥ k € K} for system (2) and the set Ug = {Uk,k € K} of bicycling arcs
(1[4
Let’s consider some other multiflow

T = (ffj = xf; —I-Axfj 2 (6,5) € Uk € K(i, )

Then Az = (Axffj, (1,7) e Uk € K(i,j)) is the vector of flow increments along
the multiarc (i, ) € U,
Zij = Z x%, Zij = Z f?j,
kEKo(i,5) kEKo(i,5)
(9)

Azij=Zij— 25 =y, Azl (i,5) € Up,

§k(r,p) = (55] (7,p), (i,5)¥ € U¥) — characteristic vector, entailed by arc
(1, p)k € U*\ UF concerning a support UF for system (2), k € K [2],

Q = Z Z Q;I‘Cj %f:] - Z %ﬁpd’fj (7_7 p) ) (10)

keK (i,j)keUk (T.p)keUR\Uk

where 7% = (icffj, (i,7)¥ € U*) — is partial solution of the nonhomogeneous
system (2) and 6%(r, p) = (85 (7, p), (i,5)" € U*), (r,p)F € UF\ U,k € K is
the system of characteristic vectors, entailed by an arc (7, p)* € UK\ UF k € K

for the fixed k € K [2, 4].
Remark. We use the partial solution
= (@, ()" e UM ke K

which is constructed to the following rules: non-supporting elements (7, p)k €
UF\ Uk k € K are equal to zeros and supporting elements (i, j)¥ € UF, k € K
satisfy system (2).
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For calculation of reduced costs (8) we will use the sparse system potentials.
Let’s write down system (11)-(13) of potentials r, u*, k€ K:

r= (Tp 'p :7;’”]'7 (Zvj) € U*)a
ub = (uf,ie 1), ke K,

for a support Ug [5] of the multigraph G for a problem (1)-(6):

uf — pjuf + Z NiPr, = (p?j — f(w)qu) :

(m) € U\U", k € Kg(i, j);

(11)

k
uj — iy + Z)‘ imp+rTij = — (pf] - f(x)qu> ’

(w) € U*, k € K§(i, j);
u - /’LZ]’U’] + Z)‘z] Tp (pf:] - f(x)qzk]) )

(i,7) € UN\U*, k € Ks(i,§) or (i,5) € U*, k€ Kg(i,7)\K2(i, j)- (13)

Consider the effective algorithm for solving sparse system of potentials
which is based on principles of decomposition of sparse system (11)-(13).
Let’s construct a matrix

. Dy kp 17 k _
D = (Dg) (ATp7 =11, t(Tv p) =1, ‘UBD )

D2 = <5ZJ(B7]?p)7£(27]) = 17 ‘U*’,t(’f’ p)k = 17 ‘UBD 5

& =¢&(1,7) —anumber of arc (i,7) € U*, € € {1,2,...,|U*|}, where

AR =N N NP SR (7). (7, p)F € UR\UT.
(i,5)k EU’“

§k(r,p) = (65]-(7', p), (i,5)¥ € UF) - characteristic vector, entailed by arc
(1,p)F € U* \ U} concerning a support UF for system (2), k € K, t = |Ug|,
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Up ={Uk ke K} 2, 4]
The vector
r= (’rpap = ma Tigs (’L’J) € U*)v
we compute from the system
D'r=w (14)

where w = (wy, t =1, t),

w== > (b= f@)aly) oh(rp)t =t(r. ) k€ K,
(i,j)*eBk,

The system (14) has unique solution, as det D # 0 [4].
For each k € K let us put uf = 0 for some i € I*. The other components of
vectors uf = (uf : i € I*¥),k € K are uniquely determined by the system (15):

l
o =l = = YoMy — (vl — S0l
(Z,j) € U\U*,pljle KS(Zaj)a (Zaj)k € U]f’
l
= s = =" Ny = i — (vl — F@la)
() € U k€ K3(ir)), ) € U,
l
= sl = = SNy = (o = ).
p=1

(i,5) € U, k € Ks(i, j)\K3(i,5), (i, j)* € UL

(15)

The system (15) consists from |K| independent subsystems. For calcula-
tion nonzero components of vector u* = (uf : i € I¥) for every independent
subsystem (15) for fixed k € K we are able to take using O(|I¥|) arithmetical
operations, where |I*| — the number of nodes of the graph G¥ = (I*¥,U*). The
algorithm with O(n) computational complexity in the worst case is used for
calculation nonzero component of everyone characteristic vector 6* (7, p), where
n = |I*| [2, 4].

We add to a vector r = (r, : p = 1,157, (i,j) € U*) the following compo-
nents 7;; = 0, (4,7) € Up\U*. Let’s receive a new vector

r= (Tp p :marzja(laj) € U*,TU - 07 (’La]) € UO\U*)
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A reduced costs &fj we calculate for the arcs (i, j)F € Uy, UY = UF\UE,
k € K and also for the arcs (i,7)*, k € K2(i,4), (i,j) € U*, using the formulas:
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