ВЛИЯНИЕ УСЛОВИЙ ТЕРМООБРАБОТКИ НА ЭЛЕКТРОХИМИЧЕСКИЕ И ФОТОЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА НАНОТРУБОК TiO₂

Мальтанова А.М., Позняк С.К.

Научно-исследовательский институт физико-химических проблем БГУ, Минск, Беларусь

Наноструктурированный TiO_2 является перспективным материалом для фотокатализаторов, электрокатализаторов и фотохимических датчиков благодаря уникальным структурным, химическим, электронным и оптическим свойствам [1]. Одним из простых способов получения диоксида титана с упорядоченной структурой нанотрубок является электрохимическое анодирование титановых электродов в этиленгликолевых электролитах с добавкой фторида аммония [2]. Последующая термическая обработка полученных аморфных нанотрубок TiO_2° приводит к их кристаллизации, причем фазовый состав зависит от температуры прогрева. Варьирование параметров отжига может также приводить к изменению функциональных свойств ТіО2. Целью настоящей работы было исследование электрохимических и фотоэлектрохимических свойств нанотрубок TiO₂, прогретых на воздухе и в атмосфере водорода.

Слои вертикально расположенных нанотрубок со средним внутренним диаметром 60 нм были получены методом двухстадийного анодного окисления Ті электродов. Для получения кристаллической структуры анатаза образцы были прогреты при 500°С в течение 1 ч на воздухе либо в атмосфере Н₂. Исследование электрокаталитической активности полученных нанотрубок в реакции восстановления кислорода (РВК) проводили в 0,1 М растворе КОН, который насыщали О₂ в течение 1 ч. Фотоэлектрохимическое исследование выполняли в потенциостатических условиях с использованием в качестве электролита 0,1 М КОН с добавкой глицина, играющего роль акцептора дырок. В качестве источника света использовалось монохроматическое излучение.

На вольтамперной кривой, характеризующей восстановление O_2 на нанотрубках TiO_2 , прогретых на воздухе, наблюдаются две хорошо выраженные катодные волны при потенциалах отрицательнее -0,7 В. В случае нанотрубок TiO_2 , прогретых в атмосфере водорода, появляется дополнительная волна PBK при \sim -0,48 В и заметно увеличивается плотность тока при потенциалах отрицательнее -0,8 В. Снижение перенапряжения восстановления кислорода в случае нанотрубок, прогретых в атмосфере водорода, может быть связано с генерацией центров Ti^{3+} в структуре TiO_2 . Потенциал начала фототока на электродах TiO_2 , прогретых как на воздухе, так и в водороде, практически совпадает и находится в области \sim -1 В. Спектральные зависимости фототока для электродов, прогретых в атмосфере H_2 , характеризуются появлением заметного фототока в области примесного поглощения TiO_2 (λ >450 нм).

Работа выполнена при финансовой поддержке ГПНИ РБ «Химические процессы, реагенты и технологии, биорегуляторы и биоорганическая химия», №2.1.04.02.

Библиографические ссылки

- 1. Khataee A., Mansoori, G.A. World Scientific. Singapore, 2012. 204 p.
- 2. Zwilling V. et. al. / Surf.Interf.Anal. 1999. Vol. 27. P. 629–637.