ПРОГРАММИРУЕМОЕ СООСАЖДЕНИЕ НАНОСТРУКТУРИРОВАННОГО AZO ДЛЯ СОЗДАНИЯ МУЛЬТИСЕНСОРНЫХ ГАЗОАНАЛИТИЧЕСКИХ СИСТЕМ

^аГойхман Б.В., ^аФедоров Ф.С., ^bСимоненко Н.П., ^bСимоненко Т.Л., ^{b,c}Фисенко Н.А., ^аДубинина Т.С., ^аОвчинников Г., ^dЛанцберг А.В., ^eЛипатов А., ^bСимоненко Е.П., ^{a,f}Насибулин А.Г.

^aСколковский институт науки и технологий, Москва, Россия ^b Институт общей и неорганической химии им. Н. С. Курнакова РАН, Москва, Россия ^cРоссийский химико-технологический университет им. Д. И. Менделеева, Москва, Россия ^dМосковский государственный технический университет им. Н. Э. Баумана, Москва, Россия

 e Горно-технологический колледж Южной Дакоты, Рапид-Сити, США f Университет Аальто, Аальто, Финляндия

Считается, что мультисенсорные системы, типа «электронный нос», главным образом решают проблему селективного определения запаха или аналита. Несмотря на то, что такие системы обеспечивают различение близких гомологов и изомеров, они требуют предварительного «обучения», в рамках которого получаемый векторный сигнал, связанный с анализируемым веществом, проецируется в искусственное пространство образов.

В данном исследовании мы впервые протестировали метод программируемого совместного осаждения для синтеза оксида цинка, легированного алюминием (AZO). Способ позволяет осаждать AZO с высокой точностью целевого химического состава, ZnO – 1,5% Al₂O₃. Материал кристаллизуется в виде тонких пористых хлопьев, состоящих из нанокристаллов со слегка искаженной структурой вюрцита [1].

Синтезированный материал показывает высокий, до 0,87, хеморезистивный сенсорный отклик на пары спиртов, 0,9 ppm, в воздухе при 300 ° С с пределом обнаружения на уровне нескольких ppb и даже ppt. Полученные сенсоры показывают хорошую стабильность хеморезистивного отклика, а также низкое время отклика. В работе мы подтвердили прямую зависимость величины чувствительности AZO от молекулярной массы анализируемого вещества для *n*-спиртов. Используя метод главных компонент и алгоритм машинного обучения *Random Forest*, было продемонстрировано не только селективное распознавание близких гомологов и изомеров спиртов, но и возможность их обнаружения без предварительного «обучения» мультисенсорной системы - сопоставляя молекулярные «отпечатки пальцев» данных аналитов из баз данных Mol2vec и PubChem с получаемым векторным сигналом.

Исследование выполнено за счет гранта Российского научного фонда № 21-73-10288, https://rscf.ru/project/21-73-10288/.

References

1. Goikhman B.V. et. al. / J. Mater. Chem. A. 2022. Vol. 10. P. 8413-8423.